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PREFACE
-

The object of this dissertation is to introduce the methods of
cancnical transformation theory into the analysis of optimal trajectory
problems. Since most optimal trajectory problems can be transformed into
Hamiltonian systems which are isomorphic to the Hamiltonian systems of
classical mechanics, the theory of canonical transformations is applicable
immediately. This study demonstrates applications of both the general
theory and the associated perturbation theory.

The Hamilton-Jacobi theory, which is concerned with a particular
canonical transformation, is applied to a number of optimal trajectory
problems, also. Various techniques for solving the Hamilton—Jécobi equa-
T10NS assoclated W1TN TNESE ProDLIEls dI'€ PLeSeuleus L1Wu Lepresculacive
optimal low-thrust missions were used to demonstrate the theory. However,
many of the results are applicable to high-thrust analyses as well.

In this diséertation, canonical transformations and the Hamilton-
Jacobi theory are viewed as solution techniques. Hopefully, future exten-
sions of the methods presented herein will give good, approximate feedback
guidance functions for optimal trajectory problems. Such extensions would
give a great impetus to the study of the Caratheodory—ﬁamilton—Jacobi view-
point of the calculus of variations, which (in the author's opinion) is the

most natural formulation of variational calculus problems.

W. F. P.

January, 1968
Austin,Texas
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CHAPTER 1

INTRODUCTION

¥ ata

Many of the major problems in modern control theorysu" and analytical

mechanics?

can be represented by a Hamiltonian system of differential equa-
tions. That is, there exists a scalar differentiable function H(q, p, t)

such that

e S e S (i = 1,...,0) (1.1)

dt Bpi’ dt 3q et :
are the ordinary differential equations which describe the given problem.
The fﬁnction H 1s called a Hamiltonian and the 2n variables ql""’qn’
P,s+++,p_ are called canonic variables. Equations (1.1) are usually re-
ferred to as Hamilton's equations or the can&nical equations. The theory
concerned with transformations between various Hamiltonian representations v
of the same problem is entitled canonical transformation theory.

Although Lagrange?! introduced the canonical équations in his theory

of perturbations, Hamilton!?

discovered the analogy between Lquations (1.1)
and certain necessary conditions of the calculus of variations. Since that
time, a close association has existed between the calculus of variations
and analytical mechanics.

Another of Hamilton's discoveries was the application of a first-order
partial differential eqﬁation to problems in optics and mechanics. Later,

Jacobil”? extended Hamilton's discovery and showed that under suitable condi-

tions, a complete soclution of the first-order partial differential equation

Numbers indicate references as listed in the Bibliography.
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s
ot

as

H(Q> "a'zl'

,t) = 0, (1.2)

where p; = %%: » is equivalent to a general solutipn of Equations (1.1).
i

Equation (1.2) is called the Hamilton-Jacobi equation, and the equivalence

of the solutions of Equations (1.1) and Equation (1.2) is a consequence of

Jacobi's Theorem.

Later in the Nineteenth Century, the theory was fugther advanced by
the research of Lie?3 in the transformation theory of differential equationms.
In particular, he studied the group of contact transformations (which form
a subgroup of the group of canonical transformations). In the early Twenti-
eth Century, Caratheodory® united the ideas of Cauchy and Pfaff (in partial
differential equation theory), Hamilton and Jacobi (in the calculus of varia-
tions and partial differential equations), and Lie (in transformation theory).
10e PesuLls O Laralueodory's reseal’cl rorin LUE WUUSLN LouluauiUns i bue
Hamilton-Jacobl approach to the calculus of variations.

Since World War II, automation, control, and optimization problems
have become increasingly important. Many of these problems require the
minimization or maximization of certain variables involved in the physical
problem. The classical method for treating such problems is the calculus
of variations. However, a straightforward application of the classical
calculus of variations requires the admissible control variables to be ele-
ments of an open set, Siﬁce a linear control problem in which the magni-
tude of the admissible controls must be less than a specified value requires
the control to lie. on the boundary of a closed set, modifications and exten-
sions of the classical calculus of variations became necessary. An extension
of the classical theory which is applicable to closed control sets was

developed by Valentine™?,



Instead of extending the classical theory, some investigators
essentially reformulated the variational calculus to meet the requirements
of modern control problems. The most notable and rigorous is the maximum
principle developed by Pontryagin and his associates3". The methods of
Pontryagin are similar to the classical calculus of variations, but are more
general in that the admissible control reéion can be a closed set. " Also,
this method is developed from a Hamiltonian viewpoint, but only Hamilton's
equations are involved in the formulation and not the Hamilton-Jacobi
equation.

Based on the ideas of Caratheodory, Bellman?, in 1956, developed an
approach (Dynamic Programming) to optimal control problems which involves
the Hamilton-Jacobi equation. Since then, Kalman!®°20 has renewed further
interest in the Caratheodory viewpoint of the calculus of variations, and
KETEL'CIICE LU PIESELLS d UidUuddiuUl UL LIS GUYOLLGEES Gt Sauwary wes chpes v
this formulation. Other research concerned with the Caratheodory-Hamilton-
Jacobi approach has been reported by Hermes!", De Zur and Haynes8, and
Snow"2. Also, a text reiterating some of the results of Caratheodory38, and
a complete *cranslaﬁ:ion‘7 of Caratheodory{s major work® have been recently
published. |

The research of References 8, 14, 19, 20, anq 42 is mainly concerned
with extending the theory of the Carathecdory-Hamilton-Jacobi viewpoint of
the calculus of variations to present day problems and discussing the pros
and cons of the philosophy of such an approach. This thesis is concerned
with the application of general canonical’transforﬁation theory, which in-
cludes the Hamilton—JaCObi formulation, to a speclal optimal control problem:

the optimal trajectory problem. Since there exists a Hamiltonian function



for this problem, it is only natural to expect certain aspects of classical
canonical transformation theory to be useful.

In Chapter 2, a consistent outline of canonical transformation theory
is presented, and an important necessary and sufficient condition for a
canonical transformation is stated and discussed. (The proof of this lengthy
theorem isgiven in Appendix A.) Classical discussioné of generating func-
tions and Hamilton-Jacobi theory are also presented. The results of a study
of the group of homogeneous canonical transformations are given and these
indicate important new applications in optimal trajectory analysis. All of
the fesults in this chapter are applicable to high-thrust as well as low-
thrust trajectory analysis.

A number of important results are contained in Chapter 3. First a
planar optimal trajectory problem is Fformulated in polar coordinates, and
optimality criteria are used to define a new Hamiltonian system which is
isomorphic to classical Hamiltonian systems. This formulation is especial-
ly convenient for analytic analyses and in the developement of new coordi-
nate systems for ﬁumerical integration procedures. As will be shown in
both Chapters 3 and 4, the zero-thrust and circumferential thrust cases can
be defined by sub-Hamiltonians of the total generalized Hamiltonian.

Since some information about the solutions of the sfate variable differen-
tial equations for these two cases is well known, corresponding knowledge
of the associated Lagrange multipliers can be obtained if a certain Pfaff
differential equation, defined by the Hamilton-Jacobi equation, can be in-
tegrated. The importance of this fact is demonstrated in both Chapters 3

and 4.



The remaining results of Chapter 3 are concerned with the coast-arc
problem. Two Hamilton-~Jacobil solutions of this problem are presented for
_the elliptical case in Sections (3.2) and (3.3). ,Egction (3.4) contains
the hyperbolic and parabolic coast-arc solutions. In Section (3.5), the
feasibility of obtaining approximate feedback guidance functions by a
canonical perturbation analysis of the coast-arc solution is discussed.

In Chapter 4, approximate Hamilton-Jacobi solutions are formed for
the generalized Hamiltonian defined by the cirgumferential thrust state
variables. The solution of Section (4.1) is a Hamiltonian formulation of
ciassical results, and the state solution can be reduced to the well known
Tsien"3 circumferential thrust solution. In Section (4.2), the coast-arc
solution of Section (3.3) is perturbed into an approximate circumferential
thrust solution which is more general than the solution of Section (4.1).
All of the results of this chapter are restricted to trajectories witn smadil
instantaneous eccentricities, but this assumption is satisfied on many
interesting missions (e.g., circuiar orbit transfers and the major portion
of escape trajectories).

A non-Hamiltonian analysis of the circumferential thrust problem is
presented in Chapter 5. This solution is useful for initial estimates in
the process of iterating optimal trajectories, and may also serve as a guide
in future Hamiltonian analyses of the circumferential thrust problen.

In Chapter 6, important trends which became apparent in the process
of numerically converging the optimal trajectories are discussed. The
initiai Lagrange multipliers and travel times of the converged optimal
trajeétories are also presented.

The canonic constant relationships developed in Chapters 3 and 4

were evaluated along representative optimal trajectories. The results of



this analysis, along with the results of a similar study of the non-Hamil-
tonian solution developed in Chapter 5, are presented in Chapter 7. The
graphical results of these analyses indicate qualitative characteristics
of the optimal trajectories. They may also be of use in forming simpli-
fying assumptions in future analytic investigations of the optimal tra-
jectory problem.

Finally, Chapter 8 summarizes the main results of this thesis, and

suggestions for future studies are presented.



CHAPTER 2

CANONICAL TRANSFORMATIONS

Most optimal trajectory problems are not integrable in closed-form,
so the system of differential equations which define the problem is usually
integrated numerically to give the solution. While the numerical solutions
are valuable, approximate analytic solutions are needed for a complete under-
standing of the problem. Since a large class of optimal trajectory procblems
can be represented by a Hamiltonian system 6f differential equations, a
canonical transformation attack on the analytic problem is suggested. An
essential feature of this method is that many times knowledge of half of
the integrals of the system leads to full knowledge of the problem without
auy Jutiles litexratlou.

It has only been in the last three years that investigators have pub-
lished reports on the use of canonical transformations in optimal trajectory
analysis. In Reference 36, the use of Hamiltonian perturbation theory in
~optimal trajectory analysis is discussed and applied to simple problems. The
literature on perturbation theory is surveyed also in Reference 36. Since
then, Mitchell?® has applied Hamilton-Jacobi perturbation theory to the high-
thrust problem, in much the same way as Nafoosi and Passmore?8. Also,

Fraeijs de Veubekel0s11l discusses the application of canonical transformation

theory to the thrust-coast-thrust problem.

2.1 Basic Transformation Theory

Since there exist several formulations of canonical transformation

theory, a consistent outline of the theory will be presented in this section.



Proofs of the various properties can be found in Reference 37; however, two
of the more important properties are proved in Appendix A. This development
wés greatly influenced by Wintner's thorough treatment of the subject in
Reference 47.

In this thesis, canonical transformatioﬁ theory will be developed
from the symplectic matrix viewpoint. The canonical matrix, defined below,

plays an important role in the symplectic formulation.

H

Definition 2.1: Let In n x n identity matrix and On ZEnxn zero

matrix. Then, the 2n x 2n matrix

n | n
J §|—— + — -
T l fa)
i ¥ 1 o t
b : o

is called the canonical matrix.

Proverties (of the canonical matrix):

2 - . =
(c.1) g I, where I = IQn .
(C.2) J is nonsingular, i.e., |J| # 0.

(c.3) Jg-l=-g.

The following definition of a symplectic matrix was used in the

investigation presented here.

Definition 2.2: Let M be a 2n 2 2n matrix. The matrix M is said to

be symplectic if



Mg = o,

where 1y 1is a nonzero scalar constant.

Siegel*? and most other texts do not include the constant u in the defi-
nition of a symplectic matrix. However, as Example (2.2) will show, u
is not always equal to +1 in a canonical transformation, as defined in
this thesis. Thus, the condition of Definition (2.2) (yhich will be shown

to be necessary and sufficient for a canonical transformation) was termed

symplectic in analogy with the classic definition.

Properties (of symplectic matrices):

($.1) If M is symplectic, then M is nonsingular and M7! = - %-JMTJ .
(8.2) Let S be the class of symplectic matrices of order 2n x 2n . Then,

S 1is a group with respect to matrix mulitiplication.

As previously noted, the main reason for studying canonical transfor-
mations is because the optimal trajectory problems under consideration can be
represented as Hamiltonian systems. Throughout this thesis the following

definition will be used for a Hamiltonian system.

Definition 2.3: Let x and A be n-vectors and t be a scalar parameter.

The Xs will be called coordinates (generalized coordinates, states) and
the Ai will be called momenta (generalized momenta, Lagrange multipliers).

If there exists a scalar differentiable function H(x, A, t) such that

o T TR P W
1

(i =1,...,n)
5\5&:.._8_};1:
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are-the differential equations which describe a given dynamical process,

then the set {H, x, A} is called a Hamiltonian system.

Notationwise, unless stated otherwise, the variables {x, 9, Q, B, b, B}
will represent coordinates, {i, p, P, o, a, A} will represent momenta,

and {H, K} will represent Hamiltonian functions.

Definition 2.4: Let {x(q, p, t), A(g, p, t)} ¢ C? be a transformation .
which satisfies the conditions of the implicit function theorem? at each
point in the domain of interest. If for every Hamiltonian H(x, A, t) ,

there exists a scalar function K(g, p, t) such that

B = X
i api
(i=1,...,n)
. v
1 aqi :

then the transformation is said to be canonical.

Note that the word "every" is emphasized in the above definition.
The definition does not say that each transformation which preserves
Hamiltonian form is canonical, but only those which preserve Hamiltonian
form and are independent of thé Hamiltonian function. Later, Example (2.1)
will demonstrate this fact more clearly.

Definition (2.4) is not a good working definition since one cannot
check "every" Hamiltonian function. However, it leads to the following nec-
essary and sufficient condition which is easily implemented; Since thne
proof of this theorem is not widely available to the engineer, it is given

in Appendix A.
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Theorem 2.1 (Necessary and Sufficient Condition for a Canonical Transformation):

Let {x(q, p, t), A(g, p, t)} € C? be a transformation which satisfies the
conditions of the implicit function theorem, and let M be the Jacobian
matrix of the transformation. Then, {x(q, p, t), A(q, p, t)} is a canoni-

cal transformation if and only if M is a symplectic matrix.

A property of symplectic matrices which is of use in determining

whether a transformation is canonical is the following:

Property 2.1: Let M = [:g gj} be a 2n x 2n matrix, wHere A , B , C ,
and D are n x n submatrices. Then, M is a symplectic matrix if and

only if ATC - and BTD are symmetric and DTA - BTC = ul .

This result is proved in Appendix A.
' To emphasize the importance of the word every in Definition (2.4),

the following example was constructed.

Example 2.1: Consider the transformation from {x, A} to {g, p} defined

by

¥ T Py ATy
(2.1)

2 T Py Ay T,

Theorem (2.1) gives an equivalent‘condition for Definition (2.4). If the
Jacobian of the transformation is not symplectic, then the transformation
is not canonical. The Jacobian of the transformation defined by Equations

(2.1) is
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and, hence,

0 0 0 -1 0 01 0
0 ol-1 o o ol o 1
Wan = | — | oy m =
o 1] 0 0 4 010 o0
1 ol o o o -1 0o o
by .. s -—1

Thus, M is not symplectic and the transformation is not canonical. How-

ever, 1I The Hamiltonian in the X, A} - system as

then

. _1 .2 2
K = 5 (p1 + p2)

is a Hamiltonian in the {q, p} - system which satisfies the requirements

2

1 is the Hamiltonian

that the Hamiltonian form be preserved. But, if H = x
in the {x, A} - system, then there does not exist a function K(q, p) in
the {q, p} - system which preserves Hamiltonian form. Thercfore, the trans-

formation of Equations (2.1) is not independent of the Hamiltonian, as re-

quired by Definition (2.4) if the transformation is to be canonical.
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The following simple example demonstrates a canonical transformation

for which u # +1 .

Example 2.2: Consider the -one-dimensional transformation which switches

the momentum and coordinate without a sign change, i.e., x =p and X =gq .

Then, .
0 1
M =
1 0
which implies
0 -1
S Moy = = (-1)J .
1 0

The fact that this transformation is canonical can be verified also by de-

fining the new Hamiltonian, K , to be the negati&e of the old Hamiltonian.

That is, let H{(x, A) be given. Then, X = %%3 A= —%%u But, K £ -H implies
) S 1 G
% T T T
.o -8K _ A(-H)
P = %3¢ - Tax T T

as ‘desired. Thus, the condition MTJM = (+1)J is a sufficient condition
for a canonical transformation, but not a necessary condition.

Before presenting a condition for a canonical transformation which
is of great use in applications, one last point should be made with regard

to Theorem (2.1). With reference to Appendix A, if only time independent



ik

canonical transformations are considered, then the new Hamiltonian can be
determined from the old Hamiltonian by a straightforward substitution of

variables. To this end, the following property is presented.

Property 2.2: Let {H(x, i, t),  IEPRRT S Al,...,kn} be a Hamiltonian
system. Then,
b,

{H*(x, A), Rysees X Xl"'f’k

n+l? n+i

with H®* =Z H + A = t, and x = 0 when t = 0 , is an equiva-

n+l’ xn+1 nt+l

lent Hamiltonian system which does not contain t explicitly, but has (n+1)-
degrees of freedom with H#*(x, A) as a constant of the motion.

The canonical form of a Hamiltonian system is usually destroyed when
the independent variable is changed. However, a simple artifice which em-
ploys Property (2.2) can be used to restore a canonical form. Upon applica-

tion of Property (2.2), H¥%(x, A) 1is a constant of the motion, say

h = constant .

H¥(x, A) =
‘Let %5 = y(x, A) , where y 1is the new independent variable. Then, the
new Hamiltonmian is

B o= 9(x, A) [H*(x, 1) - h]
since

M :?__"L{H:'.-_h].fwﬁ_}ﬁ:ﬂ(_ii_) ~—_d_k_i

9., 3. 3%, dy dt T dy

i i . S
9_& —l [H% -~ h] + ¥ 9H® - dt _d_x._.l; - _._dx_l_
axg - o, : ax, T ody dt T dy
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Thus, {é, X, A} is a Hamiltonian system with y (instead of t ) as the

independent variable.

2.2 Generating Functions

Although Theorem (2.1) gives a method for verifying whether or not
- a transformation is canonical, it does not give a meaﬁs for determining'the
tranﬁformation itself. Based upon a modified Hamilton's principle, the fol-
lowiné theorem presents a sufficient condition for a canonical transforma-

tion which is of use in the actual definition of a canonical transformation.

Theorem 2.2: Let {H, x, A} and {K, q, p} be two Hamiltonian systems.

If the Lagrangians

n

L = I Ak -H(x, A, t)
n

L' =

'E Piéli - K{q, p, t)
i=1

in the two systems differ at most by the total time derivative of an arbi-
trary scalar function, then the transformation {x(q, p, t), Alg, p, t)} 1is

a canonical transformation. In other words:

. , as%
p.4. - K(q, p, t) + a8t (2.2)

ARg - H(x, A, t) = h at

1t i

LI o Bt
n ™Mo

i 1

is a sufficient ‘condition for the transformation {x(q, p, t), Algq, p, t)} to
.be canonical.
" The importance of Equation (2.2) is mainly due to the presence of the

scalar function S#% . That is, certain specifications of S% immediately
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define canonical transformations, and certain assumptions about the functional
form of S% result in partial differential equations whose solutions define
canonical transformations. For these reasons the function S8#* 1is called a

generating function.

R

In many expositions on the subject of canonical transformations only
four basic types of generating functions are presented: 8%(x, g, t), S*(x,
p, t), S*(X, g, t), and S%(A, p, t) . The impression is given that these
are the only possible forms. However, there exist many other functional forms
for the generating functions, and some of these other forms are extensively
used in trajectory analysis. In fact, the four forms mentioned above are used
rarely. A rule for developing all forms in which the generating function will
depend on n nonconjugate old variables, n nonconjugate new variables, and

t (in general) is the following.

Dialma N 4. T ~+ - ~ e A o A 7 ~ fa -
=Tt o - = handi4 - s~ T3 2 et —— - - et il £ 38

—— A

1 LEman Amal L -
. oo ottt o —5t s - pis

(i.e., the nonconjugate condition). Then, the conditions which must be sat-
isfied in order that a canonical transformation with a generating function of
the form S(z, Z, t) is defined can be obtained by independence arguments

after substituting

w
%
b3

1l

S(z, Z, t) +
i

Hno~ 3

- 2
. [xi)\i(zi A gD qipi(Zi A pi)] (2.3)

into Equation (2.2). The A-operation is defined by

1
ox

1 if a

alAb (2.4)

1t

0 if a # b
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Throughout this thesis effective use is made of rather simple
canonical transformations which involve the switching of coordinates and
momenta, a change of sign, and the addition of a constant. A canonical

transformation involving, at most, these three operations will be referred

to as a simple transformation. A rule for such transformations, to be used

in conjunction with Equations (2.2) and (2.3), is the following.

Rule 2.2: Let p. € {x, + a,, A, +Db,} for each i = 1,...,n , where a,
e i i i’ i i i
and bi are constants. That is, the new momenta are specified to be non-
conjugate old variables plus comnstants. Then, the new coordinates are de-
fined by the conditions obtained by independence arguments after substituting

Equation (2.3), with

S(z, 2, t) =

i
it ta 3

[Xi(Pi - bi) (dki A dpi) - (xi + ai) qi(dxi A dpi)], (2.5)

i=1

into Equation‘(2.2). (The reason for specifying the momenta instead of the
coordinates in this rule is because the constants of a complete solution of
a Hamilton-Jacobl equation are actually momenta variables. This fact will
become more evident in the solution of theé Hamilton-Jacobi equations of
Chapters 3 and 4.)

Since simple transformations are used so freely in this thesis, the
following example is given to demonstrate the procedure for applying the

above rule.

Lxample 2.3: Without loss of generality, suppose that

p. = A. + C, (i =1,...,m <)
(2.86)

p. = x, +C. , (i = m+ 1,...,5)



where the C, are constants. Application of Equation '(2.5) gives

m
S(z, Z, t) = S(x, PysteesP s qm+1""’qﬂ4 = T Xi(pi - Ci)
i=1 :
n (2.7)
- I (x, + C.)q.
i=m+1 T T

Then, since the generating function has RysereoX s PyseeesPos Qoqseeq

as its independent variables, Equation (2.3) gives

m n m
s¢* = [ I x.(p, -C.)- I (x,+C.)g.]- £ q.p. - (2.8)
i=2t 0t gemr PP i PR

Substitution of Equation (2.8) into Equation (2.2) results in

ks ™m n
L oRsdas = liGe = D padus T B paugs - nuc
j=1 ¢t ©oi=t Yt ismer ¢t
m n
+ .2 [xidpi + (pi - Ci)dx.] - .E [(xi + Ci)dqi + qidxi]
i=1 i=m+1
m N
- .Z (qidp:.L + pidqi)
i=1

After cancellation and removal of the (XK - H)dt'- term:

m
.E [()\i -p ¥ Ci)dxi + (qi - xi)dpi] +
i=1
n
+ .Z [(xi + Ci - pi)dqi + (q:.L + ki)axi] = 0.
i=mt+l

Since the differentials are independent, the simple transformation is

defined by:
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pP. = A, +C 5 q. = X, (i =1,...,m)

[ N
=
[ N
[
=

(2.9)

m+l,...,n)

o
H]
»
-+
(@]
[tal
[
1
1
>
o
-3
—~
[
"

Equations (2.9) will be used extensively in Chapters 3 and 4.

2.3  Homogeneous Canonical Transformations in Optimal Trajectory Analysis

It is well known in trajectory analysis that if the variational
problem under consideration is formulated as a Bolza problem® in the calcu-
lus of variations, then the generalized Lagrangian is identically zero. For

example, in the.time-optimal problem the necessary conditions for the quantity
f n
I = tf + J .§ Ai[xi - fi(x, u, t)ldt ,
t 1=
(where ki = fi(x, u, t) are the equations of motion) to be minimized are

d oL 3L

55(5—5—{-7) -~ = O (i =1,...,n) (2.10a)
i i
5 2 92 ¢
— [z A£.] = 03 —=[1 Arf.]l1<0, (2.10b)
u ou i’ -
i=1 i-1
for all t_ < f <t. , and
o} £
n n t
(L - = i.é—%-)dt+ pX 9‘{1 dx, ] f+c1vc = 0 (2.10¢)
_ i ox, ._. OX, it £
=1 i=1 o
where
n
L = % Ai[ki - f(x, u, t)] . (2.11)
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Because of the form of Equations (2.10a), the function, L , defined in

Equation (2.11) is called the generalized Lagrangian, which is identical-

ly zero by definition. The (generalized) Hamiltomian for this problem is
then
n
H = 1T Xlx. ~ L
i= * 7
or,
n
H = I A f.(x, u, t) (2.12)
i=g * %

Later, in this section, it will be shown that the form of Equation (2.12)
has important implications in optimal trajectory analysis.
Recall Equation (2.2) of Section (2.2). This equation implies the

following differential forms

n
§s% = z (Aiéxi - piﬁqi) (2.13)
i=1
as®
K = = +H. (2.14)

If the transformation under consideration is ‘time independent, then S* does

not depend on time and the two Hamiltonians, K and H , are equal. Further,

if the generating function is identically constant, then &S* = 0 . Such
transformations have a special name.
Definition 2.5: A canonical transformation in which %%f = 0 and 68% = 0

is called a homogenecous canonical transformation? »*® (Mathieu transformation“®).

Furthermore, a homogeneous canonical transformation in which n independent
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relations between {xi,...,xn} and {qi,...,qn} are specified is called

an extended point-transformation“® (extended coordinate transformation“’).

In Reference 25, a method for transforming Lagrange multipliers from
one state-coordinate system to another is presented. This method involves a
number of matrix multiplications. Actually, such a transformation is a ca-
nonical transformation, and if the Hamiltonian is in the form of Equation
(2.12), then the transformation is an extended point-transformation, which

greatly simplifies matters. This fact is proved in the following theorem.

Theorem 2.3: Let =x = ¢(q) be a nonsingular transformation between the
coordinates of two Hamiltonian systems, and let x = f(x, A, t) and g =
F(q, p, t) be the time rates of change of the coordinates. If Hamiltonian
systems where H :iglxifi and K = iglpiFi are considered only, then the

time independent canonical transformation between the momenta of the two

svstems is defined bv the n-eauations

n
B, = I Ay 551" (im1,...,n) (2.15)
j=1

Proof: A sufficient condition for a canonical transformation is given by

Equation (2.2), i.e.,

n n
) _ . as#
IoAgx - B = opiqy - Kb
i=1 i=1
or,
n n
B . as#
I Gy - £) = 2op(qy - Fy) g
1=1 i=1
Thus,
das#
I 0

Since the transformation is time independent



§s* = 0,

which implies, by Equation (2.13):

§S%

"
o
i
o~

; 1(Ai6xi - piéqi) .

Application of the given state transformation, x = ¢(q) , gives

n n 8¢i _

(A, I ==26qg. - p.%q.) = 0

i=t ‘3= %Y 3 E |
or,

n n 3¢j

L (p., - LA, =—)8q. = 0.

1=+ 4= 3 %y 0t

Since the a; (i =1,...,n) are independent, the coefficients of their

variations must be zero, and the desired result is obtained

n 8¢j
. = LA o= . (i =1,...,n
Pt I g = 1,.00,0)

Thus, for example, if an optimal trajectory problem is completely
formulated in cartesian state coordinates, the Lagrange multiplier trans-
formation between the cartesian system and any other system (e.g., polar
coordinates, Poincare variables) is immediately defined by Equations (2.15)

and the state variable transformation.

Another type of canonical transformation which is similar to an

extended point-transformation is given by the following definition,
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Definition 2.6: A time independent canonical transformation in which:

(i) 6s = 0 , where

S = 8% ¢
i

n oo

1(piqi - xiki) >

-y

and (ii) n independent relations between {Al,...,kn} and {Pl""’pn}

are specified, is called an extended momenta-transformation.

The reason for defining such a transformation is because of its pos-
sible importance in the optimal trajectory problem. Before giving an example
of such an application, the corresponding coordinate transformation (which
will also contain momenta) will be determined.

Let X = ¢(p) be a nonsingular transformation between the momenta
of two Hamiltonian systems. Substitution of the extended momenta-transfor-
mation condition (i) into Equation (2.13) gives

1t I

T (Aidxi + xiéki - picSqi - qiépi) I (Xiéxi ~ pidqi)

i=1 i=1
or,
n
.2 (xiﬁki - qiépi) = 0 (2.16)
i=1
But, X = y(p) , so
n n Y
T (x. £ —=38p. - q.8p.) = O
i=1 ' g=1 °Py
or,
n Y,
. = I x. —% . (i =1,...,n) (2.17)
i .. 3 ©9°p.
j=1 i
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Examplz 2.4: Consider an optimal trajectory problem in polar coordinates
with thrust and an inverse square gravitational force field. The general-

ized Hamiltonian is (see Figure 1):
N 2 D T . T
H = A (v%/r - X/p* + = sin a) + 2. (-uv/r + — cos a)
1 m 2 m
(2.18)

+ A3u + Aqv/r .

where u = r , v zZrd , and m = m, ¥ ﬁo(t - to) . For a minimum, the

following wonditions must be satisfied:

oH T T . _
Yl Xl = cos o - k2 — sina = 0
or,
kl
. tan a = o=, (2.19)
and
2%H -2 I-sin o - A I—cos a <0 (2.20)
302 1 m 2 m = '
which implies
= +A.(A% A2)4% i = 4, (A% xz)'l/2 (2.21)
cos a = +A,(A] + 5 » sina = +A (A7 + A5 . .

#s e rmse Tguations (2.19) and (2.21) imply that the knowledge of two Lagrange
multipliers is necessary to determine one control. On some missions (e.g.,
multirevolution circular orbit transfers) it is well known that the optimal

control behavior is that of a slight oscillation about o = 0 . Thus, on
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many of these missions lAQI >> lel . In such cases, it might be more
economical to be treating a Hamiltonian system which takes advantage of this

knowledge, e.g., o
tan a = p, , (2.22)

where Py is a new multiplier. In this case, the important multiplier is
" bounded if |a| < 90° (whereas in Equation (2.19) A and AQ may have
wide ranges of values with only their ratio bounded), and the control is a
function of only one multiplier.

The desired situation, i.e., Equation (2.22), can be obtained by appli-

cation of an extended momenta-transformation. That is, the following Lagrange

multivlier transformation is specified:

Py = M/, Ay T PPy
Py T % Y TPy
- (2.23)
Pg T Mg A3 F Py
Py T N Ay = Py

Application of Equations (2.17) requires the new state variables to be

a = Uy U qy/p,
q, = v+ u)\g/)‘“ Vo= g, - qipl/p?
> (2.2u)
qu = r = q3
q = 0 8 = q
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In the {q,p} - system, the optimality criteria of Equations (2.19)

and (2.20) requires:

oH _ T T . ~
5o - PPy ©°S ¢ - Py sina = 0 (2.25)
or,
b,P
tan o = 2. P, 3 (2.26)
P, 1
and
321 T . T
%o = ~“P4Py —sina - p, —cos a0 . (2.27)
From Equation (2.26)
cos o = Ti/ia T pi)% s DLl u - _'.yi/.(.‘n. ! y;)” . oo

so Equation (2.27) becomes

3%H _ T 2 2 % , 2 %
3T = TPy {ipi/(l + pl) £ 1/(1 + pl) } <o
or,
3%H T o 5 2" )
332 (- ;n-p2/(1 + pl) Wt (4 + pl)} <0 . (2.29)

Since (1 + pi) > 0 for all real-values of Py > the proper sign is deter-

mined by the following conditions:

Py > 0 <+ plus sign

P, < 0 <+ minus sign.
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Since the analysis is only considered feasible for missions on which |u| < 90°,

then cos a > 0 . Thus, from Equations (2.28), the plus sign must be chosen
in order to satisfy cos o > 0 . This implies that P, > 0 , which is also
evident from the fact that v
b.P
tan o = _i_% .
P2
. i.¢: . only the numerator can be negative if ]a] < 90° . Therefore, in

..summa:v:  the generalized Hamiltonian is

K = q.p./p, - kp,p,/a% + (a,p, - q,D,)
173" %2 1727 =3 272 171 (2.31)
T
[py - qy + pylapy = appy)l/agey + op, Y1+ P
: . _ 3K . _ 3K .
subject to: q; = api s Py = aqi s (i =1,...,n)
and the optimal control is defined by
. . i e ,
oo = P, » cOs o = 1/(1 + p:zl)2 , sina = Pl/(1 + pi)2 . (2.32)

For missions with small control angles (e.g., |a| < 15°) the func-
tional form of Equation (2.31) is convenient for a binomial expansion of the
radical. Note that the approximation /Z—;QEE-Z 1 represents the circumfer-
ential thrust case (i.e., a = 0). Also, especially note that each of the
relations in Equations (2.32) depend on only one multiplier, Py

With respect to the Bolza problem in the calculus of variations, the
above development corresponds to the consideration of a modified generalized

Lagrangian defined by



28

n
iglgi(pl).'.’pn) [).(i - f(X, u, t)] s

|
i

where the functions gi3 098 represent n-independent functions of n-un-

known multipliers. The usual Bolza formulation is a special case defined
by g; =Py - For the Hamiltonian of Example (2.4), the corresponding
Lagrangian is

L = 'plpz(u - fi) + p2(v - f2) + p3(r - f3)

+ pu(e - fu) .
The Euler-Lagrange equation for the control is

aT, Ll m™
— = - O X T DL e S - U
Ow 4 LM L 11

or,
noa =
ta p1
as expected. Therefore, one can view an extended momenta-transformation as
a modified Bolza problem of the calculus of variations in which the multi-

pliers of the equations of motion in the Lagrangian are not required to be

n single pi‘s .

2.4 Hamilton-Jacobi Theory

The previous sections were concerned with the procedure for performing
a canonical transformation when a generating function is given. Attention

will now be given to the problem of determining a generating function.
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Let H(x, A, t) be a given Hamiltonian system. If a canonical
transformation to a new Hamiltonian system where K = 0 can be effected,

then the integration problem will be trivial, i.e.,

-t

_ oK _ _
q, = o, = 0 q; = constant = Bi
B (2.33)
P L. S 0 D = constant = «a,
i qu i 1

The Hamilton-Jacobi theory has as its fundamental objective the definition
of this particular canonical transformation.

Let {x, p, t} be the subset of 25 + 1 independent variables of
the set of u4n + 1 variables {x, X, g, p, t} . Then, application of Rule
(2.1) gives

n

S* @ S(x, p, t) - I a;P; -

Substitution of S% in Equation (2.2) gives

n n as n
ZoME -H = Tpiqp - K+ ge - 3 (q;by 4+ piq;)
i=1 i=1 i=1
or,
n n
. . 38 o 35 . 98 .oy
z (Aixi + qipi) - H A+ K- - ‘E (5§T-xi + §§T'pi) = 0.
i=1 i=1 i i
Then, since the set {x, p, t} is independent
Y
oS o,
i
3S .
qi = g-p—. (l = 1,,...,1’1) (2.3}‘%)
i
K = 25 + H



Thus, for the important special case when K £ 0 , the third of Equations

(2.3%4) yields the Hamilton-Jacobi equation (H-J equation):

§§_+ H(x 03

T s 5 B o= 0, (2.35)

where the first set of Equations (2.34) has been used to replace Ai by

3s
ox
i

ential equation which is to be solved for the generating function S(x,a,t),

in the Hamiltonian. The H-J equation is a first-order partial differ-

where o, & p, in the {K =z 0, q; =B py S ai}—system. As shown in the

following important theorem, if a complete solution of the H-J equation can
be determined, then a general solution to the original dynamical problem

will be defined.

Thanrem 2 2 (Tannhi'e Thearem)+ Tet S(x. a. ) he a comnlete solution of

9S

the H-J equation, and {B} be a set of n arbitrary constants and So z Si.

Then, the functions

x, = x.(a, B, t)
i i
(i=1,...,n)
_ 8(x, a, t) .
)\i - -5-;-:'1 - )\i[x(a; Bg t), 0‘7 t]

constitute a general solution of the original Hamilton's equatioms, i.e.,

. OH < oH .
X, = o5y s Ai = vl (i =1,...,n)
i
In astronomy and atomic physics, most of the Hamiltonian systems en-
countered are conservative (i.e., time does not appear explicitly in the

Hamiltonian function). In this case, H(x,‘k) is a constant of the motion

since
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n n
dH oH oH P . 2 -
& §1( . F3 YA M) lil("‘ix' txjA) E 0

Thus, for such problems it is sometimes more conveaient to consider gener-

ating functions which do not depend on time. Then, from Equations (2.34)

x = 3s(x, p)
i Bxi‘
(i-= i, ':n)
_ 38(x, p)
K(q, p) = Ex(q, p), A(a, )]

Instead of requiring K = 0 , let the new Hamiltonian be any specified

function of .the new momenta, i.e., K = K(p) . Since K is a Hamiltonian
aK
D T e e = 0
i aqi
) (i =1,...,n).
S
i api

Thus, p, = constant ¥ a, (i = 1,...,n) and so

3K(a)

i 90,
i

= constant .

Hence, once again the integration problem is trivial and the last of Equations

(2.36) becomes

as

Hlx, o

) = Kla) . (2.37)



32

A special case of Equation (2.37) is

BS) -

H(x3 -é.}‘;__ 1 H -

which Born® refers to as the Hamilton-Jacobi equation.

As it stands, the Hamilton-Jacobi theory is eiegant but it cannot
be used to solve many problems since it involves the integration of a par-
tial differential equation. .However, approximate solutions to many nonlinear
problems have been obtained by the application of perturbation theories based
on the H-J equation.

There are two basic techniques for.obtaining perturbation solutions
with Hamilton-Jacobi theory: attack a new set of ordinary differential equa-
tions (canonical perturbation theorv) or attack a new partial differential
equation (H-J perturbation theory). Instead of developing the perturbation
procedure for these two methods sepérately, they will be derived together
since the derivations are essentially the same. Moreover, when these two
techniques are applied it may be advantageous to use a combination of the
two. The basic idea in both procedures is to make the integration problem>
trivial by performing a sequence of transformations which converge to
"natural" variables for the problem (e.g., a set of canonic constants).

Let {H(x%, A, t), %, A} be a Hamiltonian system. Suppose that the

Hamiltonian is partitioned as

where a complete solution of the H-J equation for Ho is known. In practice,
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the finite sum is sometimes replaced by an infinite sum (e.g., a power
series or Fourier series expansion for H - Ho), but the procedure is the
same as for a finite sum. -

Since the H-J theory assumes the set {x, p, t} is the independent
subset of {x, A, q, p, t} , then the general equations for a canonical

transformation are Equations (2.3%), i.e.,

9S
AMOT o,
1
as .
qi = —3—5 (l-i,...,n) (2.38)
i .
m
_ oS _ 9S
K = —5—€+H = (3t+Ho)'.§Hi'
1i=1
et hn(x~ n. 7 pe a comnjete soilution of Lie no-d¢ ecudlion Ltuo o s
O - (o]
3S 35S
3t THOG g t) = 0, (2.39)

and let the system

o o
X; = xi(a, B, t)

(i=1,...,n)
o o
Ai = Ai(u, B, t) .

be the general solution of Hamilton's equations for HO , where the set
{o, £} iz the set of canonic constants determined by the solution of Equation

(2.39). From the last of Equations (2.38)
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or
. n . ]
K((X, By t) = -1 Hi[x (OL: B, t)o A (OL: B, t), 't] (2_40)
i=1
and _
3, = V= - K -
By~ B0, o, 7 3, - (i =1,...,n) (2.41)

Thus, the result is a new Hamiltonian system {K, a, B8}

There are two basic ways of attacking the "new'" Hamlltonian problem
defined by Equations (2.40) and (2.41). Canonical perturbation theory in-
volves the integration of Equations (2.41) whereas H-J perturbation theory

involves the integration of the H-J equation for the Hamiltonian X .

11

Define K_(a, 8, t) —Hl[xo(a, 8, t), 2°(a, B, t), t1 . Then,

Consider the H-J equation for KX

asi 3gi

Fr KO(B, 38 > t) = 0. (2.42)

Let S1(a, B, t) be a complete solution of Equation (2.42). Applying the

general canonical transformation Equations (2.38) again leads to the following

expressions
o = 38
i BBi
3s! . ’
bi = 'é—é"' (l = 1,--.,,1'1)
i
. _ ast - 551 m _m
K+ = EE- + K = ( 'B—E' + KO) - E Hi = - H
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The set {a, b} is a set of canonic constants for the problem defined by

'Ho - H1 , and from Jacobi's theorem, the set of equations

>
i

g.(a, b, t)
1

(i=1,...,n)

]
it

a.(a, b, t)
i

represents a general solution of the Hamilton's equations, i.e., Egs.

(2.41). If H - H
o 1

is a valid approximation to the total Hamiltonian H ,

then the system

x[o(a, b, t), B(a, b, t), t]

t

1
xi(a, b, t)
(i'=1,...,n)

2°lala, b, t), B(a, b, t), t] .

1

1
Ai(a, b, t)

should be a valid approximation to the general solution of the Hamilton's

equations for the total Hamiltonian.
n
If the effects of I Hi are required, the same procedure can be
i=2 '
applied to. H2 ) H3 , etc. One of the most powerful aspects of a Hamiltonian

perturbation theory is that one need not start all over when a higher order

approximation or the effect of a new perturbation is required.



CHAPTER 3

THE COAST-ARC PROBLEM

In many optimal trajectory problems it is sometimes desirable to
allow a coasting period (i.e., zero-thrust) duriﬁg the.trajectoryqﬂas.
For example, in a circular oribt rendezvous problem, if the final mass of
the vehicle is to be maximiied, a gain in the final mass is sometimes ac-
complished by allowing a coast-period in the trajectory. Such missions
motivated interest in the coast-arc problem.

Definition 3.1: Let x = f*[x, %-w(x,k,t),t] be the equations of motion

and A = g({x, A, t) be the Euler-Lagrange equations (of the multipliers)
_for an optimal trajectory problem where u = y(x, A, t) has been obtained

o —-—

by some optimality criteria. 1INe DrODLEN ULLLUEU Uy LUE Gidldcwwivius

equations: x = f%[x, 0, t] = f(x, t)

A

glx, A, t)

is called the coast-arc problem.

The planar coast-arc problem was first solved by Miner?S and then by

Eckenwiler?®, Hempell3, and Ng anvaalmadesso29

. The solutions of References
-9, 13, and 25 treat circular conditions as a special case and not as a con-

tinuous extension of the elliptical case. These solutions also involve the

integration of the full set of ordinary differential equations. In Section

(3.2), a solution of the coast-arc problem is obtained by application of the
Hamilton-Jacobi method. This solution is essentially the same as those

mentioned above except that it has the advantage of being defined by canonic

‘constants instead of ordinary constants of integration.

36
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The solution of Reference 29 does not require a special solution for
circular conditions, but it does involve numerous integrations. In Section
(313), a solution of the coast-arc problem is obtained by first performing a
canonical transformation of the original canonical system of Section (3.2).

' This results in a separable Hamilton-Jacobi equation whose solution involves
the evaluation of only one indefinite integral. This solution does not re-
quire a special case for circular conditions, and it also has the advantage
of being defined by canonic constants instead of ordinary constants of in-
tegration, such as those involved in the soiution of Reference 29.

The interest in the coast-arc problem in this thesis is not for its
application to coasting portions of trajectories, but rather for its po-
tential as a base solution in a canonical perturbation analysis of the low-
thrust problem. For e#ample, the generalized Hamiltonian for many optimal

itpdjecLory provieys 1s UL LuT Luian

where HO defines the coast-arc problem. Thus, for missions where the
gravitational forces are dominate when compared with the thrust-forces (e.g.,
" near-planet, low-thrust missions), the possibility exists of perturbing the
coast-arc solution into an approximate general solution to the total problem.
It should be noted that the solution of Section (3.3) appears to be
preferable in every way to the solution of Section (3.2) since it does not
have either a circular singularity or the % sign difficulties, and it can be
solved by separation of variables. However, the solution of Section (3.2) was
obtained before the solution of Section (3.3), and its study eventually lead
to the solution of Section (3.3). TFurther, the method of solution presented
in Section (3.2) demonstrates the feasibility of attacking nonseparable Hamilton-

Jacobi equations.
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3.1 Development of a Classical Hamiltonian Form

Before the classical Hamiltonian theory can be applied in trajectory
analysis, the optimal trajectory problem must be eypressed as a well~defined'
Hamiltonian system of first-order ordinary differential equations defined by
a Hamiltonian function and a set of 2n + 2 boundary conditionst

Consider the problem of extremizing the function

I = G(Xf, t.) (3.1)

fv

subject to the constraints

X, = fi(x, u, t) = 0, (i =1,...,n) (3.2)

and the geometric boundary conditions

"

xi(to) = Xio (i=1,...,n) (3.3)

Mi(xf’ t_) = Q , (i =1,...,psn) (3.4)

£

where x 1s a n-vector of state variables and u 'is a m-vector of control

variables. The problem can be formulated as a Bolza problem3 in the calcu-

lus of variations by introducing a set of unknown multipliers {Al,...,xn}
and forming the augmented functional
| tfon
I = G(Xf, tf) + . iél )\i[xi - fi(x, u, t)ldt . (3.5)
o

If I is to be an extremal with respect to the choice of u(t) , the follow-
ing necessary conditions must be satisfied:

(i) Lagrange's equations must be satisfied everywhere in the interval

to £t s tf , i.e.,
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d 9L oL

EE'(Ei') -5z = 0 (i =1,...,0n) (3.6)
i i .
oL
—a_a' = O Py (l = 1,-..,m) (3-7)
i
where
n . .
L = igl Ai[xi - fi(x, u, t)] (3.8).
and

(ii) a set of transversality conditions, say:'

Ni(xf, Ag» T) = 0, (i = 1,...,n-pt+1) (3.9)

must be satisfied at the terminal time.

The system of Equations (3.2), (8.6), and (3.7) can be expregsed as

. me e LI  SPRRINE. BT S

.. - . - .

A SVUSLEl O 1 LOSL=-Qruel sgucatlduild UV UL Lluliie o B hded U dedane W S A A b sh s aaa
.

function

n

X xiki - L{x, %, Ay u, t) , (3.10)

H"(x, A, u, t) 2y

1t

and then developing Hamilton's equations

23

,.
.
%)
sy
%
5

. _  oHf _ o
0T Xy AoOF ox; (i =1,...,n) (3.11)

Equations (3.7) and (3.10) can be combined to yield

2= o, (i =1,...,m) (3.12)

In addition, the Weiecrstrass condition® must be satisficd if the functional
defined by Equation (3.5) is to be a minimum. This leads to the further re-

quirement that



for all admissible 5ui and Guj
In most optimal trajectory problems, Equations (3.12
be used to express the control variables as functions of the

and the Lagrange multipliers, say

u, =g (x, A) . (i =1,..

i
Consider the composite function

H(Xa A, t) = H*[X: As g(xa A): t] s

and its partial derivatives with respect to the Xy and ki

8H, _ om% T omd 9u,
ax.  9x. . du ax
EX L = 1 .
(i =1,..
e oamt§oams
X, A, _, du, oA, ”
1 i j=1 3 i
. oH® .
By Equation (3.12), 5 - 0 so Equations (3.16) reduce to
3
R T
ox.  9x. i
i i '
(i =1,
§—Ii = ———-——BH:": = X
A, A, i
i i

4o

(3.13)

) and (3.13) can

state variables

. ,m) (3.14)

(3.15)
. on) (3.16)
.,n) (3.17)

Thus, Equations (3.17) are Hamilton's equations for the Hamiltonian of Equa-

tion (3.15), which is in the classical form since it does not contain any

variables which do not have conjugate momenta (e.g., the control variables).
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Equations (3.17) and the boundary conditions of Equations (3.3), (3.4),
and (3.9) represent a well-defined Hamiltonian system described by the 'gen-
eralized coordinates" {xl,...,xn} and the "generalized momenta {Al,...,kn}.
Thué, the classical perturbation theories of Hamiltonian mechanics are now

available for the optimal trajectory problem.

3.2 A Natural Polar Base Solution

Consider the problem of minimizing the time of flight of a vehicle
powered by a continuously-thrusting engine in’which the thrust and mass flow-
rate are assumed constant. ‘The only other forcing effect is due to an in-
verse square gravitational field of a nonrotating spherical body. The motion
ié assumed to take place in a single plane, and the state of the vehicle will

be described by a polar coordinate system. The control variable is the angle

’;‘j‘_"_-j’:'j'_‘_ 4_-}? 4_-}7-:1-:--!- srm At mr awm A a T i1 roAsamanAdd r\\.!:'ﬂ‘ A tha rardine vertTAn lAROF
Figure 1).
Let u=r and v = r6 . Then, the equations of motion for the

vehicle are

GO = v%/r - k/r? + %-sin a r = u
(3.18)
v = -uv/r + %-cos o 6 = v/r
m = om o+ mo(t - to) . (3.19)

By introducing four unknown Lagrange multipliers and referring to the right-
hand sides of Equations (3.18) as fi(x, a, t) (where X B Uy X, F OV,

Ry =T, Xy = 8), a generalized Hamiltonian can be defined
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. 4
H# = L )\ifi(x, a, t) . (3.20)

The control, o , can be expressed as a function of Lagrange multipliers by
. applying Equation (3.12) and (3.13) to the Hamiltonian of Equation (3.20),

i.e.,

'
-

: 1

- 2 2 : = 2 2y"72
cos « +A2(A1 + Xz) sin a +A1(A1 + k2) . (3.21)
Upon substitution of Equations (3.21) into Equation (3.20), a new Hamiltonian

is determined

H(x, A, t) = H¥[{x, A, atk), t]

or, in explicit form

- 2 10 g2y L
H = [Al(v /v - k/r%) A2uv/r + As

Y 24 .
u o+ Aqv/r] + B{Al + Az) . (3.22)
Equation (3.22) can be partitioned into a base Hamiltonian HO and a

T 1
perturbing term —{AZ + A2)72 s €ufey
. m 1 2
T i
H o= H +—(f + )%, (3.23)

If the thrust, T , is zero, then H = HO defines the coast-arc problem. A
complete solutien of the H-J equation for HO will now be obtaiped.

Before writing the H-J equation for HO , it will be advantageous to
cenclider a physical interpretation of the problem. Since thrust is zero, Lhe
state variables represent a Keplerian orbit and thus, are not.affected by the

Lagrange multipliers. (This fact is also evident by inspection of the equations
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of Definition (3.1).) Hence, for the base problem, the energy and anéular
momentum of the orbit should be constants of the motion. Also, . Ho does
not contain time explicitly, so HO should be a censtant of the motion;
and 6 does not appear explicitly in Ho , 8o the conjugate variable of
6 should be a constant of the motion. Thus, four constants of the motion
are readily apparent. To apply the H-J theory most effectively, a simple
canonical transformation should be performed in such a way that the above
mentioned constants of the motion can be related to four momenta variables
of the base Hamiltonian. For example, the energy ana angular momentum
integrals are strictly functions of state variables (i.e., generalized co-
ordinates), so a simple transformation should be employed to make two of
the state variables. in these relations, generalized momenta. Then, the
four constants of the complete solution to the H-J equation can be defined
and the only remaining problem will be the integration of a Pfaff differen-
tial equation which defines the generating function.

The arguments given above can be implemented by performing the simple
canonical transformation resulting from the following specification of new

momenta

pj. = u ., p2 = Vo, p3 = )‘3 9 pL} = )\Ll- . (3'2“')

q = -\, A = A,y s 4y = T, q, = 0. (3.25)

Since time is not involved in the transformation, the new Hamiltonian, Hé ,

is found by direct substitution
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LS 2 _ 2
Bo 9 (Py/ag - X/a3) + QP Py/a5 * PPy * PyP,/ (3.26)
. . - 08 .
The H~J equation for H' , with p, 2 +— , is
o i aqi
38 , S,
= H!(a, 359 = 0. (3.27)

Since t and qy each appear only once in Equation (3.27) and only in the
form of a partial derivative with respect to S , it is reasonable to as-

sume a partial separation of variables, i.e.,
S = Sl(t) + SQ(qq) + SN(ql, Qs q3) . (3.28)

By substituting Equation (3.28) into Equation (3.27) and using independence

arguments, the following expressions are cobtained

I S s 2 (3.29)
= T Az - s 7T = " - > .
at ot 1 E)qL+ aqu 2
where oy and o, are constants. Thus,
s = alt toayq, t S“(qif 4> qs) . (3.30)

and the H-J equation is reduced to an equation involving only three inde-
pendent variables.

For a complete solution of Equation (3.27), two more constants must
be obtained. As previously mentioned, knowledge of the two-body problem can
be used to define the other two, i.e., the energy and angular momentum of
the orbit. However, for some problems the knowledge of integrals may not

be known beforehand. Thus, the following procedure may be used to attempt
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to find the remaining unknown constants. (In Chapter 4 such a situation

occurs. )

Consider the characteristic system“lfor the H-J equation; and in

dq3 dp,, - :
particular, I and Fra (where 1 1is an arbitrary parameter)
i P2
dr P1 > @ PyPy/dg -

These equations can be combined to give

dq, g

- which integrates to give the angular momentum integral

o (3.31)

3 - 93Pp -

To obtain the energy integral, Equétion (3.31) is used along with the

dq3 dp
characteristic equations for T and T i.ed,
dqg dp ‘
—3 = 1o 42703 - x/q?
& T Pu T T o3fag - K/ag -

These equations can be combined to give.

dp1

—_— = 27,3 _ 2
Py dq, ag/az - k/ag

which integrates to give the energy integral
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- 2 2,2
o, P; ag/ag + 2k/q3 >

where oy, is taken to be the negative of energy for convenience.
Thus, the four constants required for the complete solution are
defined. The only remaining problem is to incorporate them into the gen-

erating function of Equation (3.30). This can be effected by considering

the following integrable Pfaff differential equation

. _  os% g% g%
ds* = 39 dq, + 55—-dq2 + 5af-dq3 s (3.33)
1 2 3
where
a5 ) 2\
= = +( - - .
391 pl(q3) *( ag + 2kq3 aqqs) /q3 (3.34)
aS% )
sa;' p2(q3) = 0L3/q3 (3.35)
oo :\’,:‘L [ - - Tm Aal2 e A Thee Akl bk T e Taantiatnie (3 UL and
3q3 Y42 127wy TT oo T o . :
(3.35) into Equation (3.27); that is, %%i- is defined by satisfaction of the
3

H-J equation. Since Equations (3.34) and (3.35) only depend upon 4 > then

S* is necessarily of the form

% = ! .
s p,lay)a, + pyladg, + S'(a,) (3.36)
as% and o8% would depend on variables other than
for otherwise 9q, 9q, P 43 >
which is contradictory to the functional form of Equations (3.34%) and (3.35).
(See pp. 67-68 of Reference 36 for a more thorough discussion of this property.)
Note that Equation (3.34) involves a + sign. This corresponds to

the radius increasing from perigee to apogee (p1 Z r 2 0) and decreasing from

apogee to perigee (p1 = pr < 0),
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To determine S'(qB) of Equation (8.36) consider %%i as defined
3
by the H-J equation. Since neither q, mor g, can appear in S§' , then

3S%
1 - t
S J (3q3) dq3 R (3.37)

where (§§EO' is that portion of 957 which does not contain q, or q .
3q3 8q3 3 4

Integration of Equation (8.37) yields

3/2

8'(qg) = a,q.p /o * ka o, sin=!}[(k - aqqé) .

C 2 - e o2) F] t asin~l[(ka. - 02) (K2 - a a2) " %/q.] (8-38)
43 * 93 3 43 93

2

The evaluation of the indefinite integral of Equation (3.37) involves an
assumption about the sign of a, (the negative of the energy) and a, >0
(the elliptic case) was assumed for the result of Equation (3.38). By as-

suming o, < 0 and then integrating Equation (3l37), the hyperbolic case

I

33 expression
L Bau P

0 would be ob-

is defined. To form the parabolic case (d4.= 0), the B

should be formed before setting o, = 0 . Otherwise, B

111

Ly

tained and this gives no information. In Section 3.4, the hyperbolic and
parabolic solutions are determined for the formulation of Section (3.3).
Consideration of Equations (3.30), (3.36), and (3.38) gives the gen-

erating function for the base solution

S = Otlt + CLQC_{L’, + pl(q3> 0"35 al—&)qi +
(3.39)
+ pylags og, o), ¥ 87(qq, oy, oy, 05, o)

By Jacobi's Theorem, the remaining canonic constants of the motion are
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obtained by differentiating the generating function with respect to each

. 95 . . . . .
of the ai's s le€d, Bi = T, After eliminating the intermediate vari-
i

ables, {p, q} , by Equations (3.24) and (3.25), the complete set of ca-

nonic constants for the coast-arc are:

- . 2 - 2 - e
oy Al(v /r - k/r¢) + A2uv/r A3u Aqv/r
a2 = Au
4, = TV
au = -u? - v% + 2k/r

: -3

- u /2 gin~1r(k - .

B1 = t + 1?11/0leL + TGT—kau sin=*[(k aur)
1
(.2 _ 2\"73
(x aaz) ]
5 - - '1'1—-1‘1‘" D111~1’{<]\L- - U.Z) (:-;9 ;_'_;2)—1/2,’-;1 £2 10y
r4 [ L v -

- . 2
By = -A/r+ aski/(r u) + Aql(ru) +
' -1

2 - 2 _ 2

+ [a1a3(a3 kr) + kAQ(k aur)] [rulk aqaa)]

- _ 2y/ 2y .
,84 = Xl/(Zu) alr(aq + 2u )/(2ua4)

- 3. o ka—s/z sin" [(k - a,r) (X% - a az)_%]

2 juy 14 I 43

20 1 o— 912 2 202 .
+ [kui(asaqr 2k“r + kaS) + a2a3§u(a3 kr)]

-1
. 2, 2 _ 2
[2a4ru(k auas)]

The set {a, 8} represents the closed-form solution to the coast-arc
problem. The subset {a3, s By BQ} defines the Keplerian orbit, and
the subset >{a1, s 63, Bq} defines the solution for the Lagrange multi-
pliers on a coast-arc. However, Equations (3.40) possess two singularities:

rZu=0 and zero~energy (i.e., ocur = 0). Thus, the class of missions to
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which the set {a, B} is applicable is somewhat restricted (i.e., instan-
taneous elliptical conditions with r either positive or negative for the
entire trajectory). In Section 3.3, the’ r =0 and # sign réstrictioms
are overcome.

The algebraic inversion of Equations (3.40), which is necessary to
define {x(a, 8, t), Ala, B, t)} , is not possible éince the Bi—equation is
a form of Kepler's equation. However, the canonical perturbation equations
due to thrust, for the ai‘s. and Si's can still be determined by applica-

7

tion of the implicit function theorem /. That is, the Bl-equation defines

an implicit relationship

r .= ¢(t) as’

au’ 61) 9

L3 S R N A e SR .
vvvvvv e L T,

i

- T 2 2 >
H, = Ko, 8, ¢(t, Ggs Oy 31)] ~ [xl(a, B, r) 4 Az(a, By r)1° .

1

The canonic perturbation equations are given by

A S S 4 1)
dt 3B, ~ 8B, 9r oB,
i i i
(i =1,...,4) (3.u41)

s S SR S 3 T)
at s, o0,  or 9@, °

i i i

. L. oy 3 - . L
where the partial derivatives Eve e (i = 1,...,4) can be obtained by
i i

solving the equations
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2030, By

or oo, | sa. 0
X1 1
(i =1,...,¥)
e W
5y 38, T 38, - ¢ -
i Ti

with

3/2

€
1

- U -1 - 2 _ 2y~%
t $1 + ru/m)+ + TGT-kau sin™* [(k aur) (k auaB) ]

and

g
= + (-g2 - 2y2
u =+ (~af + 2kr - o, 7°)%/r .
Since the right-hand sides of Equations (3.41) are functions of »r ,
and not t , application of the chain rule to the left-hand sides of Equa-

wiama (2 RN sdirroa Tha A IAWITIC TESILL
. - — B )

Cio__1pK |, 3K 2
dr u 98. ar 9B
1 1
(L= 1,0..,4) (3.42)
Pl sk, K26
dr = u da;  dr da ’

which only involve a:'s , B.'s , and r .
i i

3.3 A Base Solution in Poincare Varisbles

As previously.noted, the solution of Section(3.2)suffers from a number
of defects. Attempts were made to remove the circuiar singularity by perform-
ing a canonical transformation from the {oa, B} - set, defined by Equations
(3.40), to some new nonsingular set of variables. These attempts were cumber-

some, and even if they had succeeded, the ambiguity of the + signs would
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still be present in the problem. Thus, a different method of attack was
used to remove the above mentioned difficulties. The new method described
below has the additional advantage of possessing a separable H-J equation.

Consider the Hamiltonian of Equation (3.22). Since a change of in-
dependent variable will be performed later, Equation (3.22) will be modified

to include time, t , as a coordinate, i.e.,

— 2 _ 2y .
H = [Al(v /r - k/r<) Aqu/r + Asu + Aqv/r + A 1]

5
(3.43)

T .2 2%
+ m(A1+)\2) .

where AS is the Lagrange multiplier of the t=1 equation.
In Reference 31, a set of orbital parameters, denoted by {x, A} ,
similar to the classic Poincare variables33? is developed. For elliptical

missions these variables are related to the classical Keplerian parameters

vy

1
h = J[a(t - e2)/x]?
q = e Cos w
(3.44)
s = e sinw
6 = 06,

y

wk2re a is the semi-major axis, e 1is the eccentricity, and w 1is the
argument of perihelion of the base orbit. For the case of circular condi-
tions, w is taken to be 60. For convenience, the parameters defined in

Equations (3.44) will be called Poincare variables because of their close

relation with the classic Poincare variables.
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The coordinate transformations between the polar coordinates and the

Poincare variables are

e

u = (qgsin 6 - s cos 0)/h r = h%k/y
(3.45)
v = «v/h 8 = 8
and,
h = »rv/k q = (pv%/k - 1)cos 6 + (ruv/k)sin 8
' (3.u46)
g = 0 s = (rv®/k - 1)sin & - (ruv/k)cos 0 ,
where
Yy £ 1+ qcos 8 + s sin 6 . (3.47)
LEL A = 1ly Yy S5 Uy b) wma o DI, T Ll tha guntiemc AF mekiam

in the Poincare system,for a vehicle which satisfies the same assumptions as
the analysis of Section 3.2. The generalized Hamiltonians in the polar and
Poincare sysfems are

~

u
Xifi(x, o) , K = i§

juel
§
ns~Mon

AF (X, o) + A, (3.48)

i=1 1

where A: is written instead of A5 since Az is an intermediate variable.
The equétions of motion in the Poincare system need never be developed be-
cause of the propertieé of the two systems defined by the Hamiltonians
of Eéuation (3.48)., That is, since h , q , and s are constants of the
motion for the Kepler problem, the right-hand sides of their differential

equations must be multiplied by thrust. Thus, their conjugate multipliers

cannot appear in the coast-arc Hamiltonian, so
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KO = Aqe + A5 t
or,
~ - 2 3 S .
KO Aqy /(h3k) + AS s (3.49)

where 6 = v/r = v2/(h3k) by Equations (3.18) and (8.45).

The thrusting portion of the Hamiltonian, say K ,can be obtained by

1
substituting for kl(X, A) and AZ(X, A) in the thrust portion of Equa-
tion (3.43). This réquires the transformation between the two sets of
multipliers (which must be derived anyway), and this transformation is
defined by the following development.

. Since the Hamiltonians in the two systems (see Equation (3.48)) are
in the form required by the hypothesis of Theorem (2.3), the Lagrange
multinliew tmanceformation is defined by

3

5 .
= — : =
A, = 21 Aj 3Xi , (i =1,...,5) (3.50)

where x = ¢(X) is the coordinate transformation defined by Equations (3.45).

In éxpanded form, Equations (3.50) are

= - : - 2 _ 2

A1 kl(q sin 8 - s cos 6)/h A2y/h + 2A3hk/y

A2 = (Alsin 8)/h + (xzcos 8)/h - (lahzk cos 8)/v?

Ay = =(rjcos 0)/h + (Aysin @)/h = (A h%k sin 6)/y2 (3.51)
- . h o= % h2k /2 _ .

Aq = Al(y 1)/h + (Az/n A3H k/y<) (s cos 8 - g sin 8) + Ay

AS = AS -«

The inverse transformation is
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Ai T = AQh sin 8 - A3h cos 6

A2 = (h/y) {Alh + Az[q + (1 + v)cos 8] + AB[S + (1 + y)sin 0]}

Ay = (y/kh) {A1 + A2(q + cos 6)/h + As(s F sin 6)/h} (3.52)
Xu = - A2S + ASq + Aq

S

Therefore, making use of Equations (3.43), (3.49), and (3.52), the

total Hamiltonian in Poincare variables is
~ R 2 3 FS T 2 2 1/2
S K.o= AuY /(h3k) + A5 + h ~ (A% + B#) (3.53)

where

fe—3
1

{Aih + A2[q + (1 + y)cos 8] + A3[s + (1 + y)sin 6]}/y
(3.54)

o
i

A2sin 6 - A3cos 6 .
Recall from Section (3.2) the implicit relationship difficulties in
forﬁing {x(a, B, t), A(a, B, t)} . Not only was this inversion impossible,
butvalsg the resulting perturbation equations, Equations (3.42), lost their
Hamiltonian form. Both of these difficulties are a consequence of time, t ,
being chosen as the independent variable. Since the solution of this section
is to be used in analytic perturbation analyses of the optimal trajectory
problem, preservation of the Hamiltonian form'is essential. Therefore, the
independent variable will be changed from time, t , to the polar angle, 0.
In Section (2.1), a method for changing the in@ependent variable in
a conservative Hamiltonian system was given. The system defined by the

Hamiltonian of Equation (3.53) satisfies this criteria, i.e.,
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K(X, A) = ¢ = constant , (3.55)

so let

(h3k/v2) [K - c] . (3.56)

~
3]

Then, using Equations (3.53) and (3.56)

«w

Khoo=on (Az - ¢) (h3k/vy2) + %-(h“k/Yz) (A2 + B?-)l’2 . (3.57)

Before developing the coast-arc solution, an important point about
the development of Equations (3.55), (3.56}), and (3.57) must be made. Note
that c¢ is the numerical value of the total Hamiltonian K . This fact be-
comes important when an attempt is made to attach physical significance to
problems defined by a portion of the total Hamiltonian of Equation (3.57). For
example, consider the Hamiltonian for the coast-arc problem with time as the

independent variable:

~ -: 2 3 7
KO Auy /(h7k) + A5 (3.58)

Application of the change of independent variable property of Section (2.1)
requires

:':=32-_:':
K, (h%k/y%) [K - e, (3.59)

)
«

¢ and ¢ # ¢ , in general. Then, after substitut-

i

where RO(X, A)

ing Equation (3.58) into Equation (3.59)

- ':'._ * w3 2 '
Ko = Aq + (AS c ) (h7k/y<) . ,(3.59)



Equation (3.59)'is the Hamiltonian for the coast-arc problem with 6 as
the independent variable. However, note that if T = 0 in Equation (3.57),
then the resultant sub-Hamiltonian represents the coast-arc problem only if
¢ = ¢® . Thus, when applying the solution developed below to the coast-arc
problem, the value of the constant, ¢ , must be equal to c¥ , which is
easily determined by evaluating Kg at the initial instant of the coast-arc.
Other approximations (e.g., circumferential thrust) require a similar
analysis.

A simple canonical transformation can be used to form a new Hamiltonian

system which does not depend on the constant. Thus, consider

Equations (3.60) represent a canonical transformation since the addition of

conétants to the canonical variables does not affect the Hamiltonian form.

It must be stressed again, though, that the value assigned to c¢ depends upon

the physical interpretation given to a sub-Hamiltonian of Equation (3.575.
Upon‘application of the transformation of Equation; (3.60), the total

Hamiltonian becomes

= % % = 3 23
K = K&[X, A, A5(A5)] h, o+ As(h k/ve) +
(3.81)
1
+ = (h'k/y2) (A% + B2)* .
Piye- Hulllv‘hl'u.‘.;L I")uul.‘i_(;u of K in then
= 3 2
KO z Aq + As(h k/y<). (3.62)
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Since the solution of the H-J equation for the Hamiltonian of
Equation (3.62) is to be used as a base solution in canonical perturbation
analyses, it will be more convenient to consider the solution of the modi-

fied H-J equation

9S

s 3% . (3.63)

KO(X ) oy

The only difference between the solution of Equation (3.63) and the equation
— + K = 0 (3.64)

is that: (i) the solution of Equation (3.63) (which does not contain the
independent variable, 6) will contain nine canonic constants and a nonzero
Hamiltonian remainder, oy which involves a simple quadrature for the re-
maining canonic constant; whereas (ii) the solution of Equation (3.64)
contains the independent variable 6 , which is not desirable for future
.perturbation studies.

Before attacking Equation (3.63), a simple canonical transformation,

which takes advantage of the fact that neither A1 , A, mor A3 appear

2

explicitly in the Hamiltonian, will be performed. The new momenta are

defined to be
pi = h 5 P2 = q ] P3 - S PL& - 4 AL{. 3 P5 = A5 . (3'65)
Then by Example (2.3), the new coordinates are

t . (3.66)

Kal
=
i
D
-
Na)
T
"
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Equation (3.63) can then be written as

: 3
§§- + k(gg-) %E (1 + %g, cos q, +
q, . oq dgg a,

which can be solved by separation of variables.

38
3q

3

sin q, 1"

2 -

= al’

That is, assume

S = 81(q1) + Sz(qz) + 83(q3) + Su(qq) + SS(qS)

Then, after substituting Equation (3.68) into Equation (3.

the usual separation of variables independence arguments, the following

constant relations are formed

3s ) 38 _ )
E R D S e
=Y ~
R 98
— = a.(=q) — = a.(=A
34, 3 34 5
Thus,
S = a2q1 + a3q2 + auqs + a5q5 + Q
- 3
a2a5k { 1+ a,cos g,

)

5 -

19y

. -2
+ o,sin qq] dqq .
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(3.67)

(3.68)

67) and applying

. BIEN
Wetr oy

(3.70)

The indefinite integral of Equation (3.70) can be evaluated by making the

+ aq(l + cos qq)]

q
substitution =z = tan 55- ,-with the result
-2 I % I A o
I v dqu [(a3 Foop u3)51n a

2 a2 N2 N2
[y(1 - us) (1 ~ ag = o Y]+ 2 (1 -0 aq)

M

i

3

_3/2

« tan~! {[(1 - a3)tan(q4/2) + aq] (1 - a% - aﬁ)“%} .

(3.71)
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The evaluation of Equation (3.71) requires (1 - e?) > 0 , so the result
is only valid for circular and elliptical conditions. In Section 3.4), the
hyperbolic and parabolic cases are discussed. -

The set {ai,...,as} , defined by Equations (3.67) and (3.695, gives

half of the constants of the motion for the coast-arc problem. Four of

the five remaining constants can be formed by applying Jacobi's Theorem, i.e.,

3
Bi = 5%- Then, the remaining constants are defined by the 62 s 83 s
: i
84 , and 85 equations and a quadrature involving the 81 equation with
By = 4
= - 2.1 2 2 _ :
B, q, 3d2u5K[(u3 t oo a3)81n q, * au(l + cos qu)]Y1
-3
- 2 C a2 - 42y 2
.6a2a5k Y2(1 az uq)
23 = (gl - N:N ‘K{ l“ﬂ o, (! + (OS5 . } T \’U’..\ T U? - -;-;D-LLL L.f,_;
I 4 VAN ] O o -t v - N
e N2 - N2y~ — :
(1 - ag aq) Y1 + (2a3 1)Y1 sin q,
-5 :
s w2 - a2y 2 21 (02 2 _ . (3.72)
+ 6u3(1 ag au) ‘Y2 + Yi[(a3 +oag a3)51n q,
. - w2 o w2 - - w2 N2
+ au(l + cos qq)] [y(1 ag au) + (1 as)(QaBY (1 ag au)cosqu)]}
= - o3 = a2 - 4231 g2 - o2) (
B, Qg - a5ock {Yl(l o au) [(2 203 - af) (1 + cos q.)
2 234 2 2y"%/2
+ aq(S - oy - 2a3 - 2a4)51n qq] + 6a4(1 - o3 - uu) Y,
2 _ 6?2 _ a2Yad 2 2 :
+ Y1 (1 - u3) [2auy (1 ag qq)31n qu} [(oa3 + o a3)81n 9y
+ 0, (1 + cos qq)]}
_ .3 2 > : : :
B qg a2k {Yi[(d3 + oo a3)81n q, * au(l + cos qu)J
-3
_ 2 _ o2y 2/
+ 2Y2(1 ag au) o,

where
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= - N2 o m2y1-1
Y1 = [y(a as) (1 ag aq)]
(3.73)
1
= ~1 - - 2 . 24"
Y, = tan {[(1 as)tan(qq/Q) + au](l af af) }.
y = 1+ oy cos g, + au'81n Q=

Equations (3.63), (3.69), and (3.72) are easily inverted to give {q(a, 8),
p(a, B)} , and this represents the solution to the coast-arc problem.
CThe Bi ~-relationships of Equation (3.72) are somewhat more complicated

than the - “mparable relations of Equations (3.40). However, they possess

only the'zero—energy singularity (i.e., 1 - a% - aﬁ z 0 at zero-energy) and
they do not contain the * sign ambiguity. Furthermore, since a, = e cos w
and . a, = e sin w , the expressions are especially useful for near-circular
conditions if they are expanded about (a3 =0, o, = 0), i.e., zero-eccen-

tricity. With the zero-eccentricity assumption, Equations (8.72) become

By 7

82 = qq - 3u§aé k q,

By = q,t Qagas k sin q, (3.7u)
B, = 45 - 2a3a5 k(1 + cos qu)

85 = qé - ag k Q -

In Chapter 4, Equations (3.74) prove to be useful in anaiyzing the cir-
cumferential thrust problem.

An inconvenient quality of Equations (3.72) is the occurrence of Y,.
That is, when a multirevolution trajectory is considered, onc must "kecp

»« " of the arctangent function. However, since Gy and @, are less



than one for elliptical trajectories, Y2 can be expanded in a Taylor series

about (aa =0, @, = 0). This expansion is rapidly convergent, for near-
circular missions and the troublesome bookkeeping fask is avoided.

The expansion for Y2 , to second order in eccentricity, is

-2—-[qu - agsin g+ uq(i + cos qu) +
(3.75)

. 1
+ a0 s:anqu + =

2 _ N2Yad
3% (a aq)51n q, cos qu].

2 3

Equation (3.75) is extremely useful in the study of multirevolution optimal
low-thrust trajectories. For example, on a representativeloptimal escape
trajectory with circular initial conditions (F/WO =5 x 10—4, 70.5 revolu-~
tions, and travel time - 1.28 million seconds), the approximation of Equation
[2.78) held o+ leact eiv Aigit accuracv for the first 85% of the trajectory,
and at least three digits for the remainder of the trajecfory. (On repre-
sentative multirevolution circular.orbit transfers, the approximation held
six digitsvfor the entire trajectory.) Tﬁe reason for %his convergence
behavior is indicated by Figures 2 and 3. That is, for the major initial
portion of both classes of trajectories, the eccentricity is less than 0.01.
- Thus, Figure 3, which represents a relatively small range angle, shows that
the approximation holds six digits because of the small eccentricity. By
the time e > 0.01 , the range angle has reached a relatively large

_angle. Thus, Figure 4, which represents a relatively large range angle,
shows that the.approximation still holds six digits since the increase in
eccentricity is compensated for by the large range angle. However, with

respect to the final portion of the escape trajectory, the expansion tends

to become invalid as g2 + s? = e2 »~ 1 (the escape condition).



62

3.4 The Hyperbolic and Parabolic Coast-Arc Solutions

In this section, the generating functions for the hyperbolic and
parabolic coast-arcs are developed. The total solytion, for each of these
cases, can be formed easily then by evaluating the partial derivatiyes of
the generating function with respect to each of the ai's . The same set
of ai‘s is valid for each of three cases. Only the Bi's change.

The evaluation of Equation (3.71) required (1 - e2) > 0 . The eval-
vations where (1 - e2) = 0 (parabolic) and (1 - e2) < 0 (hyperbolic)
will now be developed. After applying the substitution =z = tan q4/2 and
performing a sequence of trigonometric manipulations, the integral can be

expressed as

( v"?-dc,__ = 21 ( (az? + bz + ¢) " 2dz + ( 22(az? + bz + ¢)72dz]. (3.76)

where a = 1 -~ oy b = 20LL1L , andr ¢ =1 + ay The three cases are

defined by the discriminant

-

b2 - bac = -u4[1 - ag - aﬁ] = -u(1 - e?).

First,hthe parabolic case will be considered. In this case,

b2 - BLac = 0 ., SO

by 2
%2 zZz = -
25+ =+ [z + aq/(l ug)} .

mio
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Th¢, the component integrals of Equation (3.76) can be readily determined,

an¢ substitution of these results into Equation (3.70) gives

Sp = 0y + A9, + @,dg + Gqg + ociqu -
\ q) -2 a,
+ 2 qzask [ocl1L + (1 - ag)tan §—J {tan 5 (3.77)

1

o (1 - o ytan o 2/(1 )1}
+ 5 Loy, + - oy tan 5—4 [2 - ay + au/ - ag ]

as
“ The s<i +la, B = SEBJ defines the parabolic solution.

Finally, the hyperbolic case will be considered. With b2 - 4ac > 0,
the component integrals of Equation (3.76) are easily determined by reference
to a standard tables of integrals. Substitution of these evaluations in Equa-

tion (3.70) gives the hyperbolic generating function

~ - . R . . R 3 {2 70\

. [{(a% + aﬁ - a3)sin q, + aq(i + cos qq)} < {y(1 - a3)(1 - a% - ui)}—l

1

2 . 1)7%]

n

s q
2 2 _ /2 -1 _ e 2
+ 2(0L3 + ooy 1) tanh™! {[(1 ag)tan =+ on’_'}](oc3 + a

Note that the essential difference between the elliptic and hyperbolic solu-
tions is the occurrence of the arctangent and archyperbolictangent functions,
respectively. This analogy could possibly be used to define a set of univer-

'sa:, variables for the problem.

3.5 Perturbation Attempts for Feedback Guidance Functions

The solution of Section (3.3) reduces the original Hamiltonian (Equa-

tion (3.61)) to
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K = a, + {1 a;k/[m(a, 8)y%(a, 8)1}-

1 (3.79)
~+ [AZ%(a, B) + B2(a, B)]°,

where the explicit forms of the unspecified functions (of ai's and Bi‘s)
are given by Equations (3.5u4), (3.69), and (3.72). The ideal second step
in the process would be the formation of an approxima%ion to the Hamiltonian
system defined by Equation (3.79) which inéludes the effects of both A(a, B)
and B(a, B) . In the next chapter, approximétions which‘incorporate the A~
term are presented. As will be shown, these approximations do not allow for
feedback guidance since they define circumferential thrust solutions. To
obtain feedback effects, both A and B (or approximations of these terms)
must appear in the Hamiltonian.

Analytic attempts to incorporate-the B-term into the solution were
unsuccessful. Since research in this area should be continued, some of the
reasons for failure are presented here for future investigators.

First of all, consider the functional dependence of the A-, B-, and

K-terms:
A = A(Bl) 823 835 BL{»’ — 0'25 as’ uu_s as)
B = B(Bl’ s 83, Bu, o s Doy Ogs O as) (3.80)
K = K(Blg 825 83: Bua 853 ala 0‘25 (13, 0‘49 OLS)‘
; . . . . . . oK
If the canonical perturbation equations are considered (i.e., ol = - 38,
L _ X .- dC) *
Bi = 5 where ( )~ = FEC ) , then
i
ol = SERD N (...) (1 =1,2,3, 4
i 7 e > 2 % y
: (3.81)

w
A Y
1
2
WJ;,
+
™
L
N
(=
1"
(o)
0
(%]
=
o
N



is very complicated and since it occurs in a radical

(A% + B?)
in the denominators of the perturbationequations, the situation.is compli-

The term
cated even further. Thus, approximations are necegsary.
VA7 + BZ

Before considering approximations of the
For most low-thrust missions with

term, anotner

approximation should be mentioned.

+ 1 -
m mo(t to) ,

m =
ho
the term — is very small and m > ﬁo(t - to) . Thus, a binomial ex~
o
pansion for m(t) is applicable
m
1 _ 1 o)
a5 o [1-5‘—1:‘?'—.-.],
o o

The constant mass assumption results in the vanishing of 85 from K(a, B8},
becomes a constant of the motion for this total problem approximation.

so «a
.5
The optimal control is given by

tan o = X

T

For many multirevolution optimal low-thrust missions with circular initial
hus,

conditions, the absolute value of the control angle is less than #5°.

2 <1 8] < [al. -



In this case,

2
-4 vea]

-~

vAZ + B A1 + %4%)

Therefore, to incorporate the effects of the B-term, one must consider at

least

o

But, even with this simple form the occurrence of A in the denominator
presents an effect similar to the radical in the denominator of Equations
(3.81).

For example, suppose that the instantaneous conditions are always

1 B2 1 B?
A+_'"— = [A"'—“‘—] - - s
2 A 2 A a3~a4—0
where, recalling that 61 =q, = o,

- - o . _ .3 .
a,B, = 2B5cos B, 28,sin By a2a5k(361 + Usin 61?

#

- : 3 :
6331n 81 + Bucos 81 + 2a2a5k(1 + cos 81) .

The approximate Hamiltonian for this case, along with the constant mass

assumption and vy ~ Yla =g =0 ° is
550,

u

66
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N T _ .
K = o, + m an { a282 283003 81 : 28u31n 81
- ol ( i .82
a2a5k(381 + Lsin 81) + 3 X (3.82)
.1 [~8381n 81 + Bucos 81 + 2u2a5k(1 +..COS Bi)] }
- _ _ — .L _’\{ .
2 [ a282 283cos 81 28431ﬁ B1 azusk(Sﬁi + Usin 81)]
The canonical perturbation equations for Ggs Gps Ony & 82, and 65
will all contain the term 32 » which is similar to the denominator problem

A

of Equations (3.81). Another inconvenient property of the Hamiltonian of
Equation (3.82) is that it is not a periodic function of Bl(i.e., 8).

In the next chapter, a solution of the H-J equation for the Hamiltonian
of Equation (3.82) is obtained for the caser B = 0 . It appears that
future studies which attempt to incorporate the B-term into the analysis will

have to thoroughly investigate the possibility of simplifying the %‘—expression.



CHAPTER 4

HAMILTONTAN CIRCUMFERENTIAL THRUST ANALYSIS

In 1953, Tsien"" used asymptotic expansio;é to obtain approximate
solutions of the state differential equations for a low-thrust spiral
trajectory. His solutions showed that a circumferential thrust program is
preferable to a radial thrust program in an escape mission. Since that
time, considerable research has been expended on the low-thrust problem.
Pitkin32, in 1966, published a bibliography of nearly 250 papers concerned
with the low-thrust trajectory problem. Mény of these papers duplicate pre-

viously given results, and not many improve the solutions obtained by Tsien.

127 24 15

The numerical studies of Irvingls, Moecke , Melbourne<”, and Hinz

demonstrate that up to escape conditions, circumferential and tangential

] * P e o T T ORI S A S L. S S

Lol G C R Up L QI B v ailtE Wy b AU L e e S & wa s v e & e e e o v oS CTTITT

The general character of optimal low-thrust escape trajectories, with circu-
lar initial conditions, is the following: the vehicle stays very near cir-
cular conditions for the major portion ofAthe trajectory as it gains energy

by increasing the radius and decreasing the speed. Then, after a considerable
increase in radial distance, the gravitational force becomes less dominant
(with respect to the thrust force) and in the last revolution or two, the
vehicle goes from a near-circular condition to the escape condition. Thus,
for the major portion of the trajectory, near-circular conditions are main-
tained. The character of optimal circular orbit transfer trajectories is
similar to the optimal escape in that its instantaneous conditions are also

near-circular. In Chapter 7 these trends are validated numerically.

68
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The primary objective of this chapter is not the development of a new
approximate circumferential thrust solution (although this is accomplished),
but the development of the corresponding Lagrange multiplier sélutions and a
Hamiltonian formulation of known results. All of*;he previous solutions are
concerned only with the state variable solutions since, in a physical sense,
the multi?liers have no meaning when the control is specified. However,
from the differential equation point of view, the circumferential multiplier
solutions may approximate the true optimal multipliers, if the optimal con-
trol is near-circumferential., Thus, these solutions may be of use in an
open-loop guidance scheme or in mission planning studies.

A Hamiltonian formulation is desirable for a number of reasons: (1)

once a portion of the problem is solved, the solution to a more general

problem can be attacked by adding terms to the Hamiltonian function instead

- [ .. [ Lol B PR T SO . SR P g T S, I = -1 3
VA UL LUV RS, Vil e ok v b smpemees L e A Mo AERact sf‘da": t 71 the

classical methods of Hamiltoniéﬁ perturbation theory are then applicable
to the problem; and (3) the analytic solution of the Hamilton-Jacobi equa-
tion is sometimes cleaner and easier than the straight-forward integration
of Hamilton's equations for problems with a relatively large number of

variables (such as the optimal trajectory problem).

‘4.1 The Hamilton-Jacobi Solution of Previous Circumferential Thrust Approximations

A representative collection of approximate circumferential thrust so-~
lutions are those of Tsien"", Melbourne?!, Perkinsso,_Hinzls, and Johnson
and Stumpfl8, Recently Shi and Eckstein3? applied the two-variable expansion
method to Lhe problemn.  AlL of the solutions menlloned above aooume o consbant
low-thrust acceleration (i.e., F/m E F/mo) and the solutions presented below

are also for constant acceleration since the mass-flow rate of a low-thrust

engine is very small.
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The total generalized Hamiltonian for a planar representation of an
optimal continuous-thrust trajectory problem is given by Equation (3.61):

-

K =" A+ h3kA5/y2 + (1/m) (h"%/y2) VA% + B2 ., (4.1)
If A> B and m = m o+ ﬁot (assuming to = 0), then Equation (4.1) can

be written as

K o= A, + h3kA5/y2 + (T/mo) (1 - 6t + 82t2 + ,..)-

1 (4.2)
.« (h'*/vy2) A{1 + 5-(B/A)2 T I

where § = ﬁlo/mO . The expansion for mass is in a convenient form for
future studies which take variable mass into account. It is easily verified
that the state differential equations for circumferential thrust are given by

the partial derivatives, with respect to the multipliers, of the Hamiltonian:
K o= A+ B3 /A2 + (T/m) (h%/v2)A (4.3)

i.e., B =0 (recall sin a = B(A? + Bz)—l/2 and o = 0 for circumferential
thrﬁst).

The analyses of £he investigators mentioned above were performed in
pdlar coordinates, whereas the Hamiltonian of Equation (4.3) is in Poincare
variables. The Poincare formulation gives a clearer insight into the main
simplifying assumption that the instantancous conditions are necar-circulav
(i.e., the eccentricity is near-zero). Since q Z e cos w and s Z e sin w,
it follows that g and s are near zero. For fhis éase. the complete

Hamiltonian of Equation (4.3) can be written as:
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K o= A, + h3kA5 + (hlk T/mo) (1 - 6t + 62¢2 + ,..)-

(4.u)

(Alh + QAQCOS & + 2A,sin 6) + 0(q, s) ,

3

Raad

2

where the expansions for y~! and Yy~ 2 are given in Appendix B. Then,

after making the small eccentricity and mass-flow rate assumptions, the
approximate circumferential Hamiltonian is

K = A + h3%A_ + (h% T/m ) (A.h + 2A.cos 6 + 2A.sin B8) . (4.5)
L 5 o) 1 2

3

A simple canonical transformation which changes h to a momenta and A1

to a coordinate facilitates the integration of the H-J equation,

=
o
-

I e - T TR S LR R

LT LU S

Q.:L —Al 2 q2 = q k] q3 = s ® qu_ = e 9 qS = t .

Then, with 6 as the independent variable, the H~J equation for the

Hamiltonian of Equation (4.5) is

O Y ST sy
, 9y @B M, 99

)

(4.7)
S 3s 38
('q1 55;’* 2 Eaf'cos q, 2 ?q.,

sin q,) = 0 .
2 3 4

Since neither § , q2', q; » mor g appear explicitly in Equation (4.7),

o partial separation of variables iu possible, i.e., assuwe

S = SO(G) + Si(qQ) + 82(q3)>+ Sa(qs) + S*(ql, qq) . (4.8)
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By substituting Equation (%.8) into Equation (4.7) and applying the usual
independence arguments, four constants,of the five necessary for a complete
solution, are obtained -
95  _ 98 _ 9S  _ 9S  _
36 - %1 3q, 4 > by 83 > 8qy T (4.9)

now reduced to an equation with only two independent

The H-J equation is

varilables
- 3s® 38% 3 - 9s8% Y,
\P(ql, qq) = a £ +ak (———aq 1S+ (kl/mo) (—-——aq )
L 1 1
s (4.10)
(-q 357 4 2a, cos q, *+ 2a,sin q,) = 0
173q; 2 m 3 m

PEPSR Y

. L.
Ve Al paluaowaai

The remaining constant of the complete solution can be obtained by consider-
Lo :uuaLiuu C;.¢ :

LY LHE CHdPdCLEe LS LLE SVS Leil
o8*
d(gafo
1 - Sw _ EISEd 5
3T = ———aql = (kT/mo) (————aql)
(4.11)
da, gy -
- g - y
dr ‘a(§~—o

Ay

Equations (4.11) can be written as the single eqﬁation

g%

d(zii*)
1. 5%ys
&, = (kT/m ) (aql) s

or,



[ (@) 4@ . gam) [ aq, + constant
o] og o) ‘
1 1
Upon integration
Sy = (kT )g, - aztsu i)
o’ 4 5 ’

Bql

where the functional form of ag is chosen in such a way that it reauces

to the initial value of h . Equation (4.i2) can be written more conveanlently

as
95% -
— = a.(1 - eq,) , (%.13)
Bql 5 4
where
g€ = u(kT/mo)ag . (4.34)

The development of the generating function S NOW ONiy requires tne

integration of the Pfaffian equation
ds* = ——dq, + =——dq, , (4.15)
g b
I
where —— can be determined by substituting Equation (4.13) into Ecuation

Cen10)

AC T —3
OS“ _ _ _ 3 _ /l+
= -a, aqkas(l eqq)

+

Q
Na
Plug

(4.16)
%

_ b - -1 r. - p
(kT/mO)a5 (1 eqq) { q1a5(1 eq) " + 2a,cos q,

+  24a,51n q .
3 ‘u}

Since the functional dependence of Equation (4.15) is



, pIsES ag
¥ = PREREES e
ds aql (qq) dq1 + aqu (ql, qq)dqq .

it follows by the arguments of pp. 67-68 of Reference 356 that S% is

e

necessarily of the form

. oS
8% = T q1+f(q4) . (4.17)

1

The function f(qq) is easily obtained by integrating

5%, |
f (aqu) dqy >

3SH, ., : A .
where (—§~0' is that portion of 357 yhich does not contain gq, «+ Thus,
qu ) aqu 1

T.
~ \ - T P Y —~— NSy

=Ny T TR TEEeT S TR
' . (4.18)
i ae [ cos q, o age r sin g ;
2 (1-eqy) Ay 2 (1—sq4) 9 -

The indefinite integrals in Equation (4.18) are not integrable in closed-

form. However, as will be shown in Chapter 7, |equ| < 1 for a large class

of circular orbit transfers and escape trajectories. For example, on an
optimal circular orbit transfer from an altitude of 200 statute miles to an al-
titude of 22,300 statute miles (corresponding to the altitude of a twenty-four
hour safgllite) with T/Wo = SxiO_L+ and involving 68.3 revolutions about the
earth, the maximum value of IEqu was less thaﬁ 0.95. Thus, (1-—e:q_br)"1 can be
crpanded by means of a binomial sericus. Actually this is just a Tavilor sorics:
expansion about eq, = 0 . Since ea, reached a maximum value of approxi-

mately 0.95 on many of the missions studied, (1 - qu)_1 is most effectively



expanded in a Taylor series about eq, © C* , where C* 1is to be specified.
For transfers of only a few revolutions, C% = 0 (i.e., the binomial series)
should give sufficient accuracy. For transfers of many revolutions, C* = 0.4
Lot

is a convenient value.

Define C = 1 - C* . Then, the Taylor series is

(1 - equ)“l 1./C + (eq, - C*)/C2 + ...

el (4.19)

et (equ{-C*)n/[(n—l)!C T+ ven

The indefinite integrals of Equation (4.18) can now be evaluated in series

form to give

%
f(qu) = -a.q, + aq(l - eqq) /(§5T/m0)
a, )
- 5—-{5N031n q, * € Ni(cos q, * q,8in qu)
3 2 :
+ € N2[2qucos q, + (qq 2)sin qu]
L ) 5 (4.20)
+ € N3[(3q4 - 6)cos q, * (qq ~ 6q4)81n qq] + ...}
a, )
- 5—-{—€NOCOS q, t e»N1(81n q, - g, cos qu) +
3 : . a2
+ € N2[2q431n q, * (2 qg)cos qq] +
4 2 : - a3
+ € N3[(3q4 6)sin q, * (6qq qq)cos qu] + ool
where
. l _ @ 1 ...C‘a': n
No Toc [ nél (n-1)1 ( C )]
' = 1 ® _n -C*.n (4.21)
= - - ¥ PP (o
Ni - 62[1 nz1 (n-1)! ( C )]

= L1, 3% C¥yp _
N = 03[1 §<C)+( ) +....]
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4
oo

- 2, ¢ 5{_Ci2 ) ~
L}[J-"g(c)‘f‘—é—\c) R |

0=

The Ni - expressions are determined by the TaylorﬂPeries expansion qf
(1 - e:quL)‘1 , With Ni representing the coefficient of (eq >

By combining Bquations»(4.8), (4.49), (4.17), and (4.20), the gen-
erating function is determined

S = a8 +ayq, *azq; ta,q; * qlas(l —,eqq) + £(q, ) . (4.22)

Recalling that € depends upon a the remaining canonic constants can
& P P s g

5
be determined by applying Jacobi's theorem (i.e., bi = g%-= constant):
i
by = 8- q
£ 3 . , . )
b, = q, - 5—{N051n q, * aNl(cos q, * q,sin qq) + oeea}
= - £ : -
b3 = 45 - 3 { Nocos q, t 5N1(§1n q, - q,cos qu) + ...}
b, = (1 - eq,)%/(a /)
y o 95 T (- eq)/(agT/mg
=3/ "3/
= - b oog - o a2 T .
b, ql(l equ) ‘m(l squ) /( 5T/mo) (4.23)
2a2
- 3 2
S {6N031n q, * 2€ Nl("') +
5
3 i
+ 3eN2 [...]+ueN3 [...1 + ...}
2a3
- = { . . 2N
7 { eN_cos q, + 2¢ hl(...)
+ 83N, [...] +ometN, [ ]+ oY,

2 3

where (...) and {...] vrepresent the bracketed terms in Bquation (4.20)

walen are multiplied by aQNi and a°Ni (i =1, 2, ...) . It should also
(v
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be noted that the expression Fr L%a/a5 was used in developing b5
. . )

The series expansions for b2 . b3 , and b4 contain secular

terms, i.e., the occurence of qﬁ (n =1, 2, ...) . However, all of these

-

. n+tl n
terms occur in the product form: e q, = E(sq4

n
" )

. Therefore, since
lsqul < 1 , these terms are at most of order € , as are the other terms
in the expressions.

Assuming to = 60 = 0 , the classic results of Tsien, expressed in

polar coordinates, are

3
]

o -2
r [1- _O_(.L)t]
(o] u mo

k(r/r - 1)/(r§rr/mo> .

”

(4.24)

<D
1

When the h —-eAnation and Fauation (4.13) are evaluated at + =6 =0
(28 - - (9] (9]

with the small eccentricity assumption imposed, they match Equations (4.24).
Thus, the Tsien solution is incorporated in the solution defined by {a(q, p),
b(q, p)} , which also includes approximate Lagrange multiplier solutions.

The control angle, o , is defined by

tan ¢ = s

| o

where, as functions of qi's and pi's:

>
1

—qlpi/y + p2[cos q, + (q2 + cos qq)(y] +

~4-

p3{sin q, + (q3 + sin qq)/Y]

w
il

= _pQSin q, - Py cos q
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For true circumferential thrust, P, and Py would have to be identically
zero, and since:

Rid

p2 = a2 = constant; p3 = a3 = constant ,

then a, = ay = 0 would define this case. However, as previously stated,
the reason for obtaining the approximate multiplier solutions is because of
their differential equation properties and not their.physical significance.

That is, since the functional form of each of the Euler-Lagrange equations

is

A= glx, )

(i.e., they depend only on the control through the state), if the optimal
state and circumferential thrust state are approximately the same, then the
functional form of the solutions to the circumferential tﬁrust multiplier
equations should closely approximate thé solutions of the Euler-~Lagrange

equations. However, both p, = a and Py = ag are constant, which does

2 3

not allow any variation in the multipliers as the state changes. This is
an undesirable property of the solution which results from the fact that
the defiﬁing Hamiltonian is of zero-order in q and s . Thus, since g
and s are cyclic variables, their conjugate multipliers are constants of

the motion. In the next section, this undesirable condition is improved.

4.2 A New Circumferential Thrust Approximation

In the previous section, a solution was obtained for the Hamiltonian

system defined by:



(= 3 2 - by 7.2 2 2 11
K [h, + 03KkAg/v2 & (T/m)) (n¥k/y2) VA% + B2 14
As previously noted, this approximation is somewhat inadequate because K
is cyclic in q and s . In Chapter 3, a closed-form Hamilton-Jacobil

solution was obtained for the Hamiltonian

= 3 2
KO A4 + h kAS/Y (4.25)
with no simplifying assumption for q and s . In this section, the
solution for the Hamiltonian of Equation (4.25) will be perturbed into

the solution for
K = A4'+ h3kA5/y2 + {(T/mo) (h'%k/y2) /A2 + B2]q = s =0 . (4.26)

Since <y depends upon ¢q and s , the conjugate multipliers of q and s
will not be constants of the motion for this case.
In terms of the canonic constants for the coast-~arc problem, Equations

(3.74), the Hamiltonian of Equation (4.26) is

- N )
K = a +;(kT/mo)a2 {az{ B, 3a2a5k81]

- 3 :
+ 21 83 + 2a2a5k sin Bi]cos 81 +

- - 3 +
+ 2[ B 2(120.5}((1 cos B )}}
or

= 0 Yot {-o.8 . - 28 56
X ¢, F (kT/no)a2 { b, 2p3CO (1 |
(26"

- ” 3 _.3," Llr‘
2L431n Bl u2a5x(331 + Usin Bl>}
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Since o and a, are cyclic variables, it is desirable to have their

conjugate variables as momenta in the H-J equation. Thus, the following

simple canonical transformation is defined:

Then, the H-J equation for the Hamiltonian of Equation (4.26)', with 6

as the independent variable, is

98 38 S \u s
1 2 2
(4.28)
95 9S . 3S 3 38 . \ -
- e -2 = - k(= —= (30, + 4sin Q)] = 0O .
2 30 cos Q1 2 3G sin Q1 (SQ ) 30 Q1 1
3 b 2 5
Since neither © , Q3 s Qu , nor Q5 appear explicitly in Equation (4.28),

a partial separation of variables can be effected. Thus, assume
= S¥ . 4.29)
s = 5 (8) +5,(q ) + 8,(Q) + 85(Q) + 8%(Qy, Q) (
After substituting Equation (4.29) into Equation (4.28) and applying the

usual independence arguments, the following four constants of the solution

are defined:

Thus,
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foud b3 1_3
S Ale + A2Q3 + ABQq + AHQS + S (Q1’ Qz) . (4.30)

Zguation (4.28) can then be reduced to the following partial differential

equation in two independent variables

B ag# 9S% .y ¢ 55
v, Q) = AL+ a5, + (kT/m_) (3Q2> [-Q, 59,
(4.31)
' s :
-2 - 2A_si - kA (=53 4 =0 .
A2cos Q1 A351n Q1 k H(BQQ) (3Q1 + b4sin Ql)] 0
Inspection of the characteristic system for Equation (4.31) gives the
remaining constant for the complete solution, i.e.,
aS%
d(sa“)
2 9P _ frmie N LI
P A Nowag o s A 7
- . ~\2 - '\2
(4.32)
a
.._?.1_ = 1
dar ‘

The form of these equations is the same as the form of Equations (4.11), so

the following result is obtained by comparison with Equation (4.13)

98%* X
—— = - 4.33
50 A(1 - €Q) ™, (4.33)
2
where € = uA;(kT/mo) . In comparison with the complete solution of Section
(4.1), Al+ = a, and A5 =a - The remaining constants are not equal.

Since S% is a function of Q1 and Q2 , the following Pfaff differ-

ential equation must be integrated
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. 98 as®
dss = 56;—(Q13 Q2)dQ1 + 3Q2 (Qi)dQ2 s (4.34)
where 5%:- is obtained by substituting Equation (4.33) into Equation (4.31).
1 &
As in Section (4.1), since gg is a function of "bl alone, the solution of

Equation (4.34) must be of the form

b !
o 3s f (38

%, Q, + 5510 dqQ (4.35)

1

‘ asE 1, : % : : :
whevzs (=) is that portion of o5% which does not contain Q. , i.e.,
aQ 3Qy 2

a8% ! _ -1
f (5620 dQ1 = —AlQ1 + (6/4) J {2A2(1 - sQl) cos Q1

. (4.36)
+ 2A3(1 - te)*lsin Q * kAuAg(l - eQi) /”(3Q1 + Usin Qi)} dq, .

Comparison of Equation (4.36) with Equation (4.18) shows that the only new

v7.u8 to be integrated are

e2A /(15A_T/m ) {3 | Q,(1 - €Q )—7/”dQ +u | (1-eQ )—7/“ sin Q, dQ.}
L 5" 1 1 1 1 171
(%.37)
The first integral can be evaluated in closed-form
Q, (1 - €Q )—7/” dQ, = 4(u - 3eQ,) (1 - €Q )—3/‘*/3e2 (4.38)
1 1 1 1 1 ) '

The second integral cannot be evaluated in closed-form but Itel <1 so a
-7

Taylor series for (1 - te) z can be used to form a series of terms which

are integrable. However, to obtain a more rapidly convergent series, it is

beneficial to first perform two integrations by parts which give:



-7 1 .
f (1 - te) /% gin Q, dq, = (16/3¢2) f (1 - te)” sin Q, dQ,

.3
+ [4e(sin Q1 - 4Q1 cos Ql) + 16cos Ql] (1 - te) /”/(362)

1
The Taylor series for (1 - an)” , expanded about €Q1 = C®

1
L= (1-0CM%, is

%

(1-eQ)" = L~ (e - C*)/(uL3) -

0
- T =
n=2 nl4" L

3¢7...[3 + 4(n - 2)]

LD
37 oo = D] (69 — &)

Then after making use of the results of Section (4.1) and integrating

Equation (4.39), Equation (4.36) becomes

83

with

(4.40)

\03/4 .

as%k !
(=) d = -A +
J aQ Q 1%
1
. ATHlD + timmaa NN & Al At N AEN mam N an Y1 (4 n
. bt R B - cm - <4 ¢ . i | — T~ T o <4 <47 a i ~4q 7
A

-1, 2 )
(12A5T/mo) t 5 {eNO sin Q1 +

+ aZNl(cos Q1 + lein Ql) + €3N2[2Q1 cos Ql

AS

+ (Qi - 2)sin Ql] N §-{—e NO cos Q1

+ €2 Ni(sin Q1 - Q1 cos Ql) + £3N2[2Q1 sin Q1

+ (2 - Qi)cos Q1 + ...} (ua, /(3AT/m )
{—Mocos Q1 + sMi(sin Q1 - Q1 cos Ql) +

+ €2M2[2Q1 sin Q1 + (2 - Qi)cos Ql] +

+ €3M3[(3Q% - 6)sin Q + (6Q - Qi)cos Ql] + .01,

where the Ni‘s are defined by Equations (4.21) and

(4.41)
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3:7...08 + 4(n = 2)] -C¥ -1

ot o T
= - ¥
My F L - gk IOy e
- 1 o 3:7...[3 + 4(n-2)] n-1
M, = -—3[1+ & ( ) J
1 4L n=2 (n—1)!L“(“ 1)
(4.52)
. -3 3(3°7) 6(3:7-11) , .12
M2 = 3TRZn7 Y 3nsnIl C% - TIG9LIs (C*)s + - ...
i} 37 5(3°7:11) 15(3-7-11°15) , o
My = - 3T foameprs o OF T T aresnI (€02 + - ...

3

The Mi—expressions are determined by the Taylor series expansion of (1 - 60,145
with Mi representing the coefficient of (te)l
Equations (4.32), (4.35), and (4.41) can be combined to giVe the solu-

tion of Equation (4.28)

S = Ale + A2Q3 + AaQu + A4Q5 +
(u.u3)

-1 ag* .,
+ A5Q2(1 - te) ! ( Q ) d01 .

The remaining canonic constants are formed by applying Jacobi's theorem and

making use of the fact that % . Le/A
8A5 5

Bl = 0 - Q1
- € , .
B2 = Q3 t 3 {N031n Q1 + eNi(cos Q1 + lelﬂ Ql) + ool
€ .

B = Q +=1{-Ncos Q, + eN_(sin Q, - Q.cos Q,) + ...}

3 b 2 o 1 1 1 1 1 (4.u4)

-3

B, = 0.+ (1 - €0.) /u [4(3 + tcos Q.) + c(usin Q

{ ) 1 1 1

- 16Q1cos Q1 - 901)]/(12A5T/mo) +

- +e2r [... . "/m )
+  u{ Mocos Q1 + EMl("') € kz[ ]+ }/(3A51/mo,
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-5 -7
B, = Q2(1 - €Q,) z + Aq(l - eQi) Iy .

1

[3e(3Q, + 4sin Q) - 4(1 - €Q)) (3 + & cos Q,)1/(12AZT/m )

2A2

= : 2

+ AS {e N081n Q1 + 2¢ Nl("') + ...}
2A3
—_— 2

+ A5 {-¢ Nocos Q1 + 2¢ Nl("') + .0}

- [un/(3A§T/mo)] {—Mocos Q1 + eMl(...) + ...}

+ [16A4/(3A§T/mo)] {eMl(...) + 2€2M2[...] + ...

where (...) and [...] represent the bracketed terms in Equation (4.41)

which are multiplied by A Ni , AN. , and Mi (i=1,2, ...) .

2 31

As previously noted, the A, and A3 solutions {(defined by the A

2 2

AN i P(‘!l'uf—lT'if\T‘\Q) Aave NNT ooanQTAanT ruanoTiona TN ThYR! QUATEM WwhneresAs THew

5 )
are in the system of Section (4.1). Another important difference in the two
solutions is the t(8) - relationship defined by the bq - and Bq - equa-

tions. The difference is seen more clearly if B4 is developed before

evaluating the second integral of Equation (4.37), i.e.,

—_ 3 /
= - - 4
BLJr = Q5 + (4 3£Q1) (1 EQl) /(HAST/mO)
-7 (4.45)
v oexad | (1 - eq) % sinq, dQ
5 1 1 1
Also, recall from Equations (4.23) and Equation (3.72)
%
b, = ag+ (1 -¢2q,)"/(a;T/m) (4.46)
= - - 3 1 =
Q5 = 85 g OLquUr + 0(q, 8) . (4.47)
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After substituting Equation (4.47) into Ecuation (4.45) and rewriting Equa-

tions (4.45) and (4.u46) in terms of the original Poincare variables, the

following results are obtained ad
-3/
B = t - kh36 + (4 - 3e8) (1 - €8) “4/(4h T/m )
n oo
3 Ty s
+ ekho (1 - €Q1) sin Qlin
and,
Lo
b = t+ (1 -¢€6)*(h T/m ) . (4.48
) o] o)
But, from Equation (4.33)
-3
h3 = h3(1 - o) |
so
-3 -3
B, = t- kh36(1 - €8) Ty (4 ~ 3e8) (1 - €8) /“/(Lm T/m )
o , o) o
h3 —7/!_} N
+ €k : (1 - EQi) sin QldQ1

-3
After combining the (1 - €0) z terms

B, = t+ (L-c0)%/(h Tm) +0c) . (.13,
Thus, to order ¢ , the t(8)-relationships of the two sections are also iden-
ticai (i.e., Equations (4.48) and (4.49)). TFor small 6 , Equations {(4.u8)
and (.49) urc nearly the same. Since the indefinite integral of the o
pression cannot be evaluated in closed-form, the advantage of using Bu in

of bq depends on the validity of the approximation for this integral. A

numerical comparison of the two expressions is given in Chapter 7.



CHAPTER 5

NON-HAMILTONIAN CIRCUMFERENTIAL THRUST ANALYSIS

In this Chapter, asymptotic solutions of The circumferential thrust
problem which are more general than the solutions of Chapter 4 will be pre-
sented. The governing differential equations will be developed in Poincare
variables and then certain simplifying assumptions will be made. Due to the
large number of various approximate circumferential thrust state solutions3?,
no claim of originiality is made with respect to the solutions for the state
variables. However, it appears that the associated Lagrange multiplier
solutions are new.

In the following sections, the state equations will be solved with the

small eccentricity assumption. However, the mass will be represented by a bi-

[ i R P armA mmnan A anmAnn maATEd Ane T & = 2 Fanm kWA RD and  +(A-

R O o i O S - -

§) will be formed. These solutions are very useful in predicting the time
duration of optimal multirevolution circular orbit transfers. The method of
solution for q(6; €, §) and s(6; €, §) will be indicated. These solutions
can be represented as series in two parameters, § and € = uhg %- k

The Lagrange multiplier solutions will be solved with both the small
eccentricity and the constant mass assumptions. The solutions are deveioped
to first-order in € , however all orders of solution can be obtained by sim-
ple quadratures.

The analysis of this chapter was developed to support the numerical
work of Chapter 7, and also to serve as a gulde for future Hamiltonian studies

involving the circumferential thrust problem. Thus, convergence properties

87
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and gualitative aspects of the solutions are not fully discussed. However,
in Chapter 7, the solutions are compared to the true solutionfor a represen-

tative mission,

5.1 The Solution of the State Equations -

Consider the generalized Hamiltonian in Poincare variables with time

as the independent variable, and without treating time as a coordinate, i.e.,
K o= n, v?/(0%) + %-h /A7 + BZ .
The circumferential thrust Hamiltonian is defined by requiring B = 0 , so
A S WLV ICE I %—hA . (5.1)

The differnetial equations for the state variables, with the small eccentric-

dX.

i _ 3K . . .
i 51& . Since the right-hand sides

g=8=0

=

ity assumption, are of the form

of these equaticns are defined by derivatives of the Hamiltonian with respect

to multipliers, then the small eccentricity assumption can be made in the
oK

Hamiltonlan before differentiation, i.e., 3%23:0 z %%- Thus,
i ijg=s=o0
x 3 T :
K Aq/(h k) + - h[Aih + 2A2 cos 6 + 2A3 sin 6] (5.2)

The Hamilton's equations for the state variables are

g.'b_ = 3.15. = _T_‘__hz

dt A m
1

dq _ 9K N T

T - A = 2 o h cos 6
2

ds _ 3K _ I_ .

3 ° 3% = 2 = h sin ©
3

d 2 B g m

dt = R,
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. de _ 3 i
Then, since I 1/(h°k) , the rates of change of h , q, s , and t

with respect to 6 are given by

dh _ T s
& = —kh )
dg _ , T,
T 2 - k h” cos 6
(5.3)
ds _ T [T
5 ° 2 = k h™ sin ©
dt 3
— = k .
de h
m
Let & = —~. Then, assuming t_ = 0 ,
m o
o
1.1 (14sn)?
m m
°
Lo L cstes2e2 4 00 (lst] < 1)
m m_

The differential equations for h and t , to second-order in § , are

then

dh o T4 D ost o+ 82¢2)k B5
do m
(0]
{5.4)
dat 3
S = ni.

Assume solutions of the following form



30

h = n® + 6hl + 62n2 + ..

° , (5.5)
t o= t° o+ 6t! o+ 82¢2 + ...

After substituting Equations (5.5) into Equations (5.4) and equating
coefficients of like powers of & , the following perturbation equations

are formed

ah™ _ T Oy 5
3w E-k(h )
[e]
(5.6)
(o]
dt~ _ 043, .
T " (h7)°k
dhl'_ T oy 11 o.5 .0
36 = o KI5 nl - ()% 7]
[e}
(5.7)
dtl_ Oy2 1.1 .
IF ° 3k(h7)% h' 3
and
2
%%‘ = %‘kis(ho)” n2 + 10(h°)3 (A2 - (%) t!
O
_ o4 .0 .1 Oy5 ,,.0y2
5(h )* £t~ hl + (h7)° ()] (5.8)
2
%% = 3k[(h®)2 K2 + 3kh°(h1)?]

Note that the perturbation equations must be solved in the order that they

are written.
The first equation of Equation (5.6) can be solved by separation of

variables, and its solution can be expressed as
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1
!

h (1 - ¢€6) ", (5.9)
(0]

oy
H

where

1!

6(t ) = 0, h h(t ) , € (5.10)
(o] ) (@)

i
=
oy

[o 0 =

|
A

Substitution of Equation (5.9) into the second of Equations (5.6) defines
anc e equation solvable by separation of variables with the result

[

t = [1 - (1 - ee);“]/(ho ) . (5.11)

OEIH

Equations (5.9) and (5.11) represent the zero-order solution and they are
the same as the solution by Tsien“" discussed in Chapter 4.
To obtain the first-order solutions, Equations (5.8) and (5.11) must

R Sf SUDSTITULEU LILO LUUALLULS \Jef /s  20Siy tie dasoo we cuwmas=ill

{(5.7) can be written as

dn!

; S - -1.1 Y - -1 _ - -5
3% 0 e(l - €8) ~ hl = kho[(i €0) (1 - €6)"°/y] . (5.12)

Equation (5.12) is a linear, inhomogeneous differential equation whose homo-

gereous solution is

-5
(hly = c (1 - €6) z ,

where CO is a constant of integration. A particular solution of Equation

(5.1?) can be obtained by assuming the following solution form:



92

1 = - -4
h = C1 + C2(1 £6) .

Then, after applying the boundary condition hl(0)~= 0 , the solution for

h! is easily formed, i.e.,

- TS/

hl = [5(1 - €8) " - (1 - €8) -41/(20 T/mo) . (5.13)

The differential equation for +t! , upon making use of Equation (5.13),

is
1 -3 -7 )
e’ 3kh2[5(1 - €8) Ty _ (1 - €98) /u _ 4(1 - €8)721/(20 T/m_)
de lo! o}
This equation integrates to give
- = 3z :/1. - . . .o , .
T- = Liv - Lo(1 - €b) + DL —- EOJ - 4 =~ vUy 'J/LLU\UOL/MO} Jelwedty

Thus, the solution of Equations (5.3) to first-order in & is given

by

h° + 6nl

=
H

(5.15)
t = t%+ stl

where Equations (5.9), (5.11), (5.18), and (5.14) define the right-hand sides
of Equations (5.15).

After substituting the first and second-order solutions into the first
of Equations (5.8) and combining terms, the following differential equation is

formed
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N 2 -
A’ 5 (1 - c)-1n? = kh3[(1 - €6)

dn 5/
a0 " &

13
o 5(1 - €6)

. (5.18)
+ 4(1 - €6) /”]/(uo T/m_)

Reid

Again this is a linear inhomogeneous equation whose homogeneous solution is

of the form

(h2) = C (1 - €8)
(o]

A particular solution can be obtained by assuming the following solution

form:
-9 1 1
h? = C1(1_- £8) /L +‘02(1 - €8) a + C3(1 - e@)ﬁ .

. - - N - - e . T T JP T S Tl man I
ATLEX 1HE dDUAVLUE LT DUWILGLY WULIUL bt g ciis Goavoaol -£ _1_..":__'3 {r: 1“.\
is given by

-9 -5 -
12 [(1 - e0) T4/160 - (1 - €0) /4/u8 + (1 - e8) " %/32

1

(5.17)

(1 - ee)%/GO]/(h T2 /m?)
O o]

The 12 - differential eguation is then

2 ~-11 -7
g%‘ = [3k b /(T/m )2] [7(1 - €8) /47800 - 11(1 - €6) /%/2u0

-3 -3 WL
+. {1 - €8) /2/50 + 3(1 - £6) /”/32 - (1 - €0) 12/10

=¥

+ 7(1 - €6) "/300]
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Thi: equation integrates to give

. -7 -3
t2 = 3{2/9 + (1 - €6) /”/200 - 14(1 - €86) /“/180
-3 1 ]
+ (1 - e€68) /25 - 3(1 - €8)/8 + (1 - €8)°/5 (5.18)

3
- 7(1 - c0) '4/225)/(h_1/m )3
Therefore, to second-order in & , the solution of Equations (5.3) is

h° + shl + 62n2

o g
1

2 ¢ 6t + §2¢2

ot
]

These equations are very.useful for determining approximate cutoff-times in
Topmemie Tl dFoeynsEion conemes INUAIVING CITCUIAT OPDIF LraUSlers. LUl ehaiibic.
given the initial and final values of the radii of the two circular orbits,

initial and final values of h can be determined. Then, Equation (5.9) can

be used to solve for a zero-order approximation of Gf in closed form. Upon

substitution of this value in Equation (5.11), a zero-order approximation of

o

the final time can be determined, say tf .

Then, a simple Newton's itera-
. . . o} . . .

tion scheme, which uses tf as a first guess, can be used to determine the

szucond-order approximation of the final time, say t% . For all of the

aumerical studies which were performed in support of this thesis, the dif-

rercnce between the optimal final time and t%

was always less than 1.0%
Coo Tabile @),
The diflerential equations for g and s will now be considercd.

+.. Lguations (5.3)



or,

dg
do

ds
de

S5

2 Dyn® cos o
m

2 I'kh” cos 6
m

—3%— = 2 %k(l - 6t + 62t2) (r® + sh! + Sh2)cos ©
o
(5.19)
%% = 2 %ku - 6t + 62¢2) (1° + 6h! + &n2)sin 6
o
to second-order in & .
Assume solutions of the form
q qo + ﬁql + 62q2
(5.20)

After substituting Equations (5.20) into Equations (5.19), the following

perturbation equations are formed:

2k %— (h®)%cos 6
(e}

2k = [ (12°)%! - (h°)"t°]cos 6
e}

2k ;n? (DY E%)2 = 17 + u(1°)3[n2 - h1tO)

© (5.21)
6(h%)2(h1)2}cos 0 ,



96

i
%% (i =0, 1, 2) with sine 9 replacing cosine 9.

Equations (5.21) are easily integrated if one assumes Taylor series

and similarly for
ey
. - . m . - .
expansions for the (1 - €8) -terms which appear throughout Equations (5.21).
The resultant solutions will then be power series in both € and ¢ . How-
o . . . . . .. n
ever, the series should be rapidly convergent since all terms containing ©

N nt+l
are multiplied by ¢ .

5.2 The Solution of the Lagrange Multiplier Equations

In Chapter 4 it was argued that even though the Lagrange multipliers
do not have physical significance when circumferential thrust is specified,
they may be approximated by the circumferential multiplier solutions if the
optimal state variables are closely approximated by the circumferential
vstate variables. Thus, approximate circumferential multiplier solutions
may be applicable in open-loop guidance analysis.

Consider the Hamiltonian of Equation (5.1). Since the differential

dhy 3K

equations for the multipliers are defined by prai g (i=1,...,4) ,
i

the small eccentricity assumption cannot be made in the Hamiltonian. That is,

the differential equations must be formed first and then the q = s = 0 as-

3K _ 3K 0 which implies A, and A3

sumption can be applied. AOtherwise, 5q Yy )

are constant.
After substituting for A and assuming m = L Equation (5.1) can
be written as

= 2 3 T Y /vy +
K /\u v4/(h7k) + m H{Alh,y

(5.22)
+ AQ[cos 0 + (q + cos 0)}/v] + Aa[sin 0+ (s + sin 0)/y1}.



Then, the

Hamilton's equations for the multipliers are

e

T T
(-2 Eg h/Y)!\1 - E;[cos 6 + (g + cos 8)/vIA,

Ny
[63:8

oh

g3

{sin 8 + (s + sin B)/y]A3 + [Byz/(h”k)]Au
o

T
- = (Egh/y) {Ai h cos 8/y - A

2[1

(g + cos 68)cos 6/y] + A3(s + sin 8)cos 6/v}

[2y cos 9/(h3k)]Au

T
L 16/
(moh/y) {Alh sin@/y +

AQ(q + cos O)sin 8/y -~ A3[1 ~ (8 + sin ©)sin v/vYJs

[2y sin e'/(h3k)]1\.L+

- = = %-h[(l + 1/v)sin 8'A2 - (1 + 1/y)cos 8 AS]
5 .

(s cos & - g sin 8) [~2AqY /(h3%) + % Alhzly2
o

T
m

Azh(q + cos 8)/v2 + %-Agh(s + sin 8)/v2]
o o

After changing the independent variable from t to 6 and making the

small eccentricity assumption, Equations (5.23) become

(Iﬁl

ao

T _ T.3 -
(-2 ” h k)/\1 (2 - h°k cos 6)A2
O Q
(2 T ok sinB)A. + (3/h)A
mo 3 in
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(5.23)
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|

dAu
dé

The system of Equations (5.24) is a linear system with variable

T 1y £ 2
kmo h*k) [(h cos 6)[\1 - (sin B)A2

-

(sin 6 cos 6)A3] ~ (2 cos G)Au

T
(—
m

]

h%k) [(h sin 8)!\1 + (sin 6 cos 9)A2
2 N .
{cos G)Ag] (2 sin G)Aq

. :
—~ h"%[(2 sin 6)A2 - (2 cos e)A3] .

(¢]
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(5.24)

coefficients, where h(8) is given by Equation (5.9) (i.e., h = h°) since

L N

dA1
aoe

[

|

o
@D

Thim

Som dmame ~AF e~ Tanmatimme [ h 911 haecams
, . a ) :

-3 1
f[e/(uho)] (1 - €6) z {Qho(i - ee)’l“/\1

1
2 cos 8 A, + 2 sin 6 A} + 3(1 - €60) % /h
; 3 4’ o

-1
(e/4) (1 - gp)~} {ho cos 6(1 - €6) ”Ai - sin%g A,

8 si - 2
cos sin © A3} cos 6 Aq

1
(e/4) (1 - e6)7! {ho sin 8(1 - €8) ﬁAl + sin 8 cos 8 A2

2 ~ . I
cos“8 A3} 2 sin § h,

(c/u) (1 - ¢0)) {2 sin 8 A. - 2 cos © AS}

2

(5.25)



Since Equations (5.25) are

solutions of the form

A, = A9 + el
1 1 1

Further, since only missions where
binomial expansions for all of the
“ions (5.24). Then, the resultant

trons are.
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easily integrated when € = 0 , assume

+ ezAi P 1

-

Lyene,lt) (5.26)

[e@] < 1 can be considered, assume
(1 - €6)" - terms which appear in Equa-

zero and first-order perturbation equa-

an’
1 _ 3A°/h
de Lo
dAg .
d—e—- = (—'2 COS G)Au
(5.27)
an°
3 N 2
36 - A"z Dl u;uu
an®
_._..f.l,.. - O
de ®
and
dhy o 0
—_— = 1 1 _
5 (3/nO)Aq [QhOA1 + 2 cos © A2
. o o
+ 2 sin © A3 + BGAH]/qho
ah; ° 0
5w = (-2 cos e)A& + [h cos © A, - sinZe A,
(5.28)
+ cos 6 sin 8 Ag]/u
ant
3 (-2 sin 6)A} + [h sin ® A° + cos 6 sin 6 A°
do i o) 1 2

- cos? Ag]/u
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1
dl\u

— 3 o - ©
% ° (sin ® A2 cos 9 A3)/2 .

Note that the only first-order term which appears on the right-hand
sides of Equations (5.28) is Ai ; and the differential equation for Ai
contains only zero-order terms on its right-hand side. Because of this

property, all orders of solution can be obtained by simple quadratures.

n

That is, the nth»order perturbation equations for Az , A2

, and Ag will

depend upon AE , but the differential equation for AE will depend at most
upon the A?’l (i=2,3)

m

Assuming t =6 =0 and A,(t) A, , the zero-order equations
o o i o io

are easily integrated to give

O —-—

Ai = 3Au06/hO + Alo

A2 = -2A sin'@ + A

2 Lo 20

(5.29)

AO = 2A (cos & - 1) + A

3 4o 20

O
Au - Auo

Note that these solutions also represent the circular coast-arc multiplier
solutions.

.8ince the specified boundary conditions are satisfied by the zero-
order solution, the boundary conditions for the first and higher-order per-
turbation eguations are Ag(o) =0 (1= 1y0.a,ly 3= 1,2,0.0)

To obtain the first-order solutions, the differential equation for

Ai must be solved flrst. This results in
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1 = - - 3 -
Aq Aqoe + (A20 A30/2)s1n 8 + (1 cos S)Aqo/Q . (5.30)

After substituting Equation (5.30) into the remaining equations of (5.28),
the first-order equations can then be solved by geparation of variables.

Thus, the solutions of Equations (5.25), to first-order in € , are

A1 = A10 + SAMOB/ho + 8{(3A20/ho - A10)6/2

- 2 - :
21Auoe /(8ho) 2A2 sin B/ho +

0

+  (u4A - 2A30) (1 - cos 6)/ho}

40
A2 = A20 - 2A40 sin 6 + 8{3A209/8 +
+ (hoAlo/u - A20)s1n 8 + 9A40(cos 6 - 1)/4

+ (11Aq08 sin 6)/4 - 5A20(Sln 9 cos 6)/8

4 Ef /70 4. DA I Y Tmd NL o 2y
: 30 Hooo - ) ’
A3 = Aso + 2A40(cos B - 1) + s{(—3A40/4 + 3A30/8)e
+ (A20 - hoAlo/u) (cos & - 1) + QAMOCSln 8)/4

- 11A40(6 cos 8)/4 + (SAHO/u - 5A30/8)81n 8 cos 8

+ 5A20(sin28)/8}

A = AHO+ e{—Aqoe + (AHO - A30/2)81n )

+ A20(1 - cos 6)/2}

Since these solutions contain secular terms, their range of applica-
bility is not as great as the range of applicability for the state variable
. - n .
solutions. The secular terms are caused by the (1 - €@) - expansions, and

for the solutions given above the expansions are about the point €86 = 0 .
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Since 0 < €6 < 1 on typical multirevolution trajectories of long duration,
'it is probable that the convergence can be improved by piecing ‘together so-
lutions obtained by using, for example, €6 =0, .1, .2, ..., .9 as
expansion points, instead of just €6 = 0 . As shown in Chapter 7, the so-
lutions of Equations (5.31) are good approximations to the true solutions for

€0 < 0.25 .



CHAPTER 6

COMPUTATIONAL CONSIDZRATIONS

In Chapter 7, the base canonic constant relationships developed in
" Chapters 3 and 4 are evaluated along several optimal circular orbit trans-
fers and optimal escape trajectories. The generation of the optimal tra-
jectoriés requires the nuﬁerical solution of a two-point boundary value
problem. There exist various iteration schemes for solving these problems,
and Reference 22 discusses the relative merits of several different itera-
tion methods. Reference 22 also containg a representative Bibliography of
the many technical papers written on this subject.

In the generation of the optimal transfer and escape trajectories,
important trends, concerned with the methods for converging the trajec-
_tories, became apparent. For example, it was found that the little publicized

a43 was very effective in the convergence of escape trajectories,

secant metho
but it was not as effective as the linear perturbation method?2 in converging

optimal circular orbit transfers. The apparent reasons for this difference

are discussed in Sections (6.1) and (6.2).

6.1 Optimal Low-Thrust Escape Trajectories

In Section (3.1), necessary conditions for a Bolza problem in the
calculus of variations were stated. For a time-optimal mission in which the
only peometrical boundary condition at the final time is the requirement that
the terminal encrpy satisfy the escape enerpy condition, the Uransversality

conditions, expressed in polar coordinates, are

103
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lpl = H(tf)—l = 0
= - 2 -
b, =[x - Ay u/k]tf 0
- (6.1)
= - 2 -
by = [x, = Agrév/k], 0
£
v, = A0t = 0.
The escape condition will be denoted by
v = [w? +v2 - 2/r] = 0. (6.2)

£

The governing differential equations are Hamilton's equations for the

following Hamiltonian

Ut Av/r ot %;— A2+ a2, (6.3)

= 2 - 2y .
H Al(v /v - k/1r%) Azuv/r + A 1 5

3

The differential equations have three important properties:

(i) iq = 0 , which implies Aa = constant £ 0 since Au(tf) =0

(ii)  the equations of motion only contain the Lagrange multipliers
1 1
. 2 2472 2 2y72
in the form Al(xi + Az) and A2(A1 + XQ) 3
(iii) the differential equations for the Lagrange multipliers form

a linear system, say A = g(x)Ir .

By property (i), the initial value of Aq is determined. Properties

(i1i) and (iii) imply that if wQ s W P

and ws are satisfied, then

3 b4 u 3
Ji optimal trajectory is defined.  Tor example, supposo wg = ¢3 = wu = ¢, =0
. J
& - & - o , o4 = 1
and wi = H(tf) - 1 = Ca , with Cs # 0, -1 . Then, H(tf) = Ca + 1 = Eg .
Let {a%_, X A 0} be the set of initial values forthe Lagrange multipliiers

0° "20° “30°
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C A% C A

orBg> Cor5ge 01

which generates this trajectory. Then, the set {Cokﬁo,

generates the optimal trajectory for which wi =0 (i=1,...,5). That

is, since A= g{x)x 1is a linear system, the set {Coki(t)]i = 1,00l

t <t s t.} can be formed by integrating %E(cox)

o £ g(x) (COX) from

t to t . In particular, at t

o) f:
) = . - 1 _
H(tf, cox) = cO H(tf, A) = CO(CO) 1
'z - 2 = -
Yy, = [(coxl) (coxa)r u/k]tf cO wQ(tf) 0
v _ 2 = =
ws = [(COAQ) (COAS)P V/k]ch Cows(tf) 0
wg = (Cokq)t = CO Au(tf) = 0

f

~ B FV T -, —— - ~——A 2 . - - - .
Civaily, Thl Zocops zondition iz o#i1) eatiefiod cince

2 217%  _ 2 21-%

(Cokl) [(Coki) + (COX2) ] = Al[kl + 12]
. L
() Tea) + (o) 172 = ai + 2,172

That is, the state differential equations are unaffected when the Lagrange
multipliers are scaled.

Since optimal low-thrust escape trajectories are reputed to be dif-
ficult to converge, the linear pérturbation emthod was first employed
to form the solutions. This method involves the integration of twice the
e of piven differential equations (i.o., Lhe given cquat fons e Their
varlational equations), and also requires a guess for the final time ot the

trajectory. With very low-thrust, this method was not too successful.
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Because of certain well-known characteristics of optimal escape

trajectories with circular initial conditions, an alternate method whicn

Ll

takes advantage of this knowledge was employed. This method, the secarnt

2
®

method, is less complex than the linear perturbation method since:. it conly

involves the numerical integration of the original set of differential =zgua-
tions, no final time estimate needs to be given, and it involves the gues-
sing of only two initial Lagrange multipliers. The secant method proved to
he vervy successful in the generation of very low-thrust optimal escape tra-
fectories.

The procedure followed in applying the secant method to the escape
problem will now be outlined. First of all, the iteration of five final

conditions was reduced to a second-order iteration scheme by: (1) termin-

- - P .o S L AU A AP W e ; 5 - o .
CLLLE Cile ubfed dvtaar die vl b o e e - ’\"ﬁ—’r’? rnmArtian wae earierian:

(2) requiring Au 2 0 ; and (3) using the previously discussed linear system
property, which is equivalent to specification of one of the initial Lagrange

multipliers.

Since it is well-known that optimal escape trajectories are closely

approximated by circumferential thrust programs (i.e., a = 0) for the ini-

“tial portion of their trajectories, then

tan o 2= —— - 0. (6.5)
0

1

Thus, the scaling condition is applied to AQO’ say A 1 for all iter-

20

ates, and a lopical first guess for xlO is AlO = 0. Since Au z 0, the

.

oy eenmaioing mulliplier to pucss Lo ABO

6]

As noted above, o = 0 should be a good approximation for the initial
portion of the trajectory. Thus, a good first guess should involve the assump-

tion Xl(t) T 0. Consider the differential equation for Xlz
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To keep Al(t) * 0, then AiO .

-A + A v /r 0
o' "o

30 20
Since X?O = 1 is assumed, an initial guess for A30 is given by
lsb z vo/rO . (6.5)
Thus,
{Alo = 0, AQO = 1, ASO = vo/ro, AHO = 0} (6.6)

representé a set of first guesses for the initial Lagrange multipliers.
The first guesses of Equation (6.6) needed a slight modification

since the trajectories '"spiraled in" (instead of going out) with these

guesses. The reason for this is apparent- from the differential equation

for » , i.e.,

éé_ _ du _ 2 ~ 2 ., T 2 2\—7%
T S <V /v - k/r% + - }1(A1 + AQ) . (6.7)

By requiring A 9= 0 , the radius developed a large oscillation. Intuition

1
would lead one to believe that this is a nonoptimal effect. This large oscil-

lation is due to the fact that the trajectory stays near-circular conditions (i.
e., v2 = k/r) for the initial portion of the trajectory and thus the (v2 - k/r)

/r term in Equation (6.7), which is dominant since Al(t) 0, is oscillating

about circular conditions. This condition can be averted by assuming a small,
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nonzero value for XiO so that there will some interaction between the
gravitational and the thrusting terms in Equation (6.7). Then.the radial
velocity will be small, and the radius will be a sdowly-varying, well-be-
haved function. A good first guess for xiO is a value which makes o, N
+0.5°. Table 1 presents the optimal initial multipliers and transit times
‘for various values of thrust.

For some missions, the final-value of the range angle, 6 , is im-
portant. The analysis developed above is still applicable to such missions
vif the-initial-value of the range angle is unimportant. For example, sup-
pose 6c is the desired final-value of 6 , and e(tf) # GC is the final-
value of 8 on an optimal trajectory with G(to) = 60. Then, the desired
optimal trajectory can be determined by a rotation in 6 defined by A0 =
Gv - O(t:) . Thus, for this case, the initial-value of 6 will now be
80 + GC - S(tf).

An indication of the accuracy of the numerical integration scheme

can be obtained by adjoining a multiplier for the mass to the Hamiltonian, i.e.,
H% = H + Asrh R (6.8)

and numerically integrating the differential equation for AS . Then, since
time does not appear explicitly in the new Hamiltonian, H* , it will be a
constant of the motion. The number of digits which H¥® holds over the en-
tire trajectory gives an indication of the accuracy of the numerical integra-
tion procedure.

Concluding this section, it appears that the reason for the success of
the secant method was due to the relative weakness of the teriii.al geometrical
constraints on the problem. That is, the only terminal geometrical boundary

condition was the escape condition, i.e. w2 + v2 - 2k/r. = 0 . In contrast
. ? ? f F £ ?
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the secant method was ineffective when applied to the problem of the next

section, which involves three terminal geometrical constraints.

6.2 Optimal Circular Orbit Transfers o

The only difference between the formulations for the optimal escape
trajectory and the optimal circular orbit transfer trajectories is the spec-
ification of terminal boundary conditions and the resultant transversality
conditions. The terminal geometrical boundary conditions for a circular

orbit transfer are

lpl = r(tf) - PC = O
b, = ulty) = 0 (6.9)
1
= - 2 _
¢3 = V(tf) (k/r‘c) = 0.

The remaining terminal conditions are given by the transversality conditions

vy
Vs

H(t_.) -1 = 0
£ (6.10)

i

Au(tf) = .0 .

The governing differential equations are the same as in Section 6.1 and since
Au = 0 , then XHO = 0 1is defined for the iteration scheme.

As a result of the success of the secant method in determining the op-
timal escape trajectories, the secant method was applied to the optimal trans-
fer problem. It was found that when w2 (of Egs. (6.9)) was not near zero
on an iterate, the secant method usually would not converge the trajectory.
Thus, the linear perturbation method was employed. This method préved to be
more effective than the secant method, but judicious guesses for the initial
multipliers and final time were necessary for convergence.

As a first guess, the a(t) * 0 assumption was used to guess the

initial multipliers. After a few unsuccessful attempts, the ten pound
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thrust case was finally converged. Then, it was a relatively simple manner
to step down (in increments of one pound of thrust) to the five pound case.
Both the escape and transfer analyses were determined only for thrust forces
raﬁging from ten- to five-pounds since the five-pound trajectories were al-
ready requiring in the neighborhood of one million seconds, real time.

In all of the circular orbit transfers, effective use was made of
the approximate solutions of Chapter 5. The second-order approximation of
the final time, which was détermined by a simple Newton's iteration on
Equations (5.5), was always within 1.0% of ‘the optimal transfer time. This
aided the convergence properties of the linear perturbation method consid-
.erably. Table 2 lists the optimal initial multipliers and the transit times
(along with the approximate transit times given by the analysis of Chapter 5)

for several values of thrust and specific impulse.



CHAPTER 7

QUALITATIVE ASPLCTS OF OPTIMAL LOW-THRUST TRAJLCTORIES
In this chapter certain qualitative aspecté of the solutions formed
in Chapters 3, 4, and 5 will be discussed. The canonic variables which
we~2 developed in Sections (3.3) and (4.2) are evaluated along representa-
tive optimal trajectories. The resultant trends are discussed in Sections
(7.1) and (7.2) and displayed graphically in Figures 4 through 13. These
evaluations also give an indication of the functional form of the canonic
perturbation equations without performing the tedious development of the
equations.
In Section (7.3) the non-Hamiltonian solution, which was developed
in Chapter 5, is discussed. Tigures 14 through 25 compare the approximate
‘solution with the true circumferential and true optimal solutions. This
analysis verifies the conjecture that the circumferential states and mul-
tipliers are good approximations to their optimal counterparts in multirev-

olution, low-thrust missions.

7.1 The Canonic Constants of the Coast-Arc Problem

In this section the canonic variables defined by Egs. (3.67), (3.69),
and (3.72) will be discussed. First note that the first equation of Egs.

(3.72), i.e.,
B, = q, (7.1)

where q, = 8 , is not a constant of the motion for the coast-arc. The

reason for the nonconstant character of Bl was discussed previously (see
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page 57). Since the Hamiltonian for the coast-arc problem in the {u, B}-

1t

svatem is just H a, , then

o) 1
Pyl e = 1 > B = B +b (7.2)
de ‘aai‘ 1 17 ’

Thus, a canonic constant, bi

result is trivial, i.e., b1 2 0 . The triviality of this result is a con-

s can be easily formed from Eq. (7.1) and the

sequence of the artifice involved in treating the independent parameter (8)
as a coordinate.

As noted in Section (3.4), the set {ui,...,as} is well—defined for
both the hyperbolic and parabolic cases as well as for the elliptic case.

Thus, singularity difficulties are not encountered with these variables.

- .. . ST =l s o Lhama scmmiahTlan fFar wanNoQBNTATIVE CASES H0E Gioe—

LR A I = e -

played in Figs. 4 through 7. The time rate of change of o (% e sinw) is

I

not shown since its behavior is similar to aq (z e cosw).

Figure 4 exhibits the behavior of a1,>the base Hamiltonian, along
the optimal five-pound-thrust transfer. The 5ehavior along the optimal five-
pound-thrust escape is similar to oy of Fig. 4 for the first 9 x 105 sec-
onds of the trajectory, and then oy becomes a monotonically decreasing
function until the end of the trajectory (reaching a minimum value of -160,000).
This change in character of a, on the escape trajectory is probably due to
The reduction in strength of the gravity force, with respect to the thrust
force, as the radius increases. Near the escape condition the gravity and
thrust forces are of the same order of magnitude, so the thrust Is no longer

a small-parameter. Although o, 1is an oscillatory function, the mean value

1

th

of the function is very slowly varying, and the amplitude of the oscillation

(=N
5]

relatively small for the major portion of the trajectory.
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The angular momentum variable, o, (actually, o, differs from
the classical angular momentum by k_%) is displayed in Figure 5. In this
case the ten-pound-thrust case is shown also. This demonstratés the ex-
pected result that a higher thrust level causes ;-more rapidly varying
variable. However, the functional forms of the two cases are almost iden-
tical, and this property is true for the other variables as well. Thus,
the ten-pound-thrust case is only presented when the clarity of presentation
is not affected. In both cases o, is a monotonically iﬁcreasing, nonos-
cillatory variable.

A partial time history of oy for the circular oribt transfer is

shown in Fig. 6. In Figs. 16 and 17 the dashed-curves represent the com-

plete time histories of o, for both the transfer and escape trajectories.

3
Although aq remains small for the entire transfer and for the major por-
(10N OF ing BSCANE TTATRCLOTY. LL 1S 811 OSCILLIdLODY LULDGLLON Wil HiuluLoL=

L]

cally increasing amplitude and period. The increase in period is due to
the fact that as the radial distance of the vehicle increases, a complete
revolution about the central body takes a longer amount of time. Thus, the
instantaneous orbital parameters become more slowly varying, and in partic-
ular, the argument of perihelion (which is the major cause of the rapid
oscillation) deoes not change as fast. As previously mentioned, the quali-
tative behavior of «, is similar to that of «

i 3

In Pig. 7 the total time histories of ag  are shown. These slowly-

varying, near-linear curves indicate the validity of the constant mass assump-

ti
=

tion in low-thrust analyses. That is, since « and
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if ﬁo is small, then A5 should be slowly varying. Also note that

as(tf) @ -1 for each trajectory. This is a consequence of a transversality
gondition for variational problems in which the final time is uﬂspecified (e.
g., see the first equation of Eqs. (6.1) and Egs. ?6.10)).

At the escape condition, the instantaneous state of the vehicle de-

fines a parabolic orbit, i.e., unit eccentricity. Thus,

2 2 2 2

a? + aﬁ = e w + e‘sin‘w = e = 1.

cos
3

Therefore,
1 -02-0a2 = 0. (At escape.)

Insepction of the {81,...;65} - set, defined by Egs. (3.72), shows that the

. . . _ 2 _ 2 _ . _
82 5 83 s 64 , and 85 equations contain (1 ag au) terms in the de

NAamin gt ana AF Fha T akht hand adAdAan AF +Fhain aanatIana L A S oS I 1t PR
: = o , AR

must be restricted to either elliptic, parabolic, or hyperbolic conditions.
A partial time history of 82 for the circular orbit transfer is

presented in Fig. 8. A1 appears linearly in the right-hand side of the BQ—

expression. Thus, B is "generated" by A Figures 20 and 21 show that

2 17

A1 is a monotonically decreasing funciton for the major portion of both the

transfer and escape trajectory, and Fig. 8 shows that B2 is a monotonically

increasing function. Contrary to intuition, A1 is a more slowly-varying

function than B8 That is, it appears that since the differential equations

2
for A1 and 82 are of the general form
dA1 ~ ~

(7.3)
dp

8

e

|

T 1,
= £f%(a, B) ,
m

[al
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then, in analogy with the state equations, intuition would lead one to

believe that 82 should be more slowly varying than A, since the total

1

right-hand side of its differential equation is multiplied by the small-pa-
rameter %-. However, the right-hand sides of Eqs. (7.3) do not represent
forces/unit mass and, thus, the same argument does not apply. For example,

near the midpoint of the five-pound-transfer

dA
0

iy

> {(6 x 10‘3)1\1 - 30(hycos6 + Agsin®)} + (1.5 x 10‘*)1\4 R (7.4)

[N

where {:-+} contains %- and (1.5 x J_OL*)I\L+ does not. From Figs. 20, 22,
and 24, A, 75 x 109 , Ay * 2 x 10% , and A, ® #500 . Since A, is of

the same order of magnitude as A2 , Eq. (7.4) becomes

dn,
= = {3 x 107 6 x 10°} 8 x 106

~

Thus, the thrust portion is actually greater than the nonthrust protion of
the equation. Also, since the nonthrust portion can be negative, the total
rate of change may be less than the thrust rate of change alone. This
heuristic argument accounts for the more rapid vafiance of 82 (as opposed
to Ai)'

The third equation of Egs. (3.72) shows that A2 "generates" 83 R
and the time histories of these variables are presented in Figs. 9, 22, and
23. Both A2 and 83 are oscillatory functions with increasing periods of
oscillation. For the first half of both trajectories, the mean-value of 63
varies more slowly than the mean-value of A2 . This is probably due to the
fact that B is a canonic constant for the coast-arc defined by the initial

3

conditions, and, thus, B8 stays near Bs(to) until the character of the

3

trajectory begins to change (i.e., deviate from very-near-circular conditions).
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Then, for the second half of both trajectories, the amplitude of oscillation

of B, becomes greater than the amplitude of oscillation of A2 , as was the

3

case with A1 and 82 mentioned above.
In Fig. 10, a partial time history of Bs-w(the canonic variable gen-
erated by t) is exhibited. Note that for the first 200,000 seconds 85 is
more slowly varying than t (i.e., -t vs. t 1is represented by the dashed
curve for comparison). This is because the state of the vehicle is still very
near circular conditions. This fact can be verified by considering the B, -

5

relation

B. = t - h3ke8 + 0(e) ,
and the t(8) relation for a circular orbit, i.e.,

t = h3ke . (circular conditions; to = 60 = 0)

That is, B, 1is essentially "generated" by the circular t(8) relationship,

5
so it is slowly varying when the eccentricity, e , is very small (i.e., near-
circular conditions).

Concluding this section, the {a, B} - set represents a well-defined
set of variables for missions with instantaneous elliptical (including circu-
lar) conditions. The differential equations in the {a, B} - system for any

space mission involving an inverse-square gravity field and a thrusting force

will be of the form

do I.”

’a‘é‘ = m f(OL, B)
dB = .rl['._ £
a"e_ = m f (a3 8)

As discussed above, the new state related variables will be more slowly varying
- . . T . .o
than the original state variables 1if — is small, whereas the new multiplier

related variables do not necessarily possess this characteristic.
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7.2 The Canonic Constants of the Circumferential Thrust Problem

Before the presentation of the time variations along the. optimal tra-
jectories of the canonic variables defined by the-Hamilton-Jacobi solution in
Section (4.2), a brief discussion about the general assumptions used in de-
termining the solution will be glven, Recall that three basic assumptions
were made for the trajectories of interest: (i) the magnitude of the control
-angle, o , is less thaﬁ 45°; (i1) 1 > €6 for each § ¢ [eo, ef]; and (iii)
the instantaneousbeccentricity is small for the total optimal transfer and
for the major portion of the optimal escape trajectory.

In Fig. 11 the optimal control angle histories for four representative
missions are shown. On each of these missions the control is an oscillatory
function with increasing period and amplitude. On the optimal transfers the
m;gnffgde of the control is never greater than 35°, and a lower thrust level
implies a smaller maximum value for the control (i.e., a more nearly circum-
ferential thrust orientation). The magnitude of the control on the optimal
escapes stays less than 10° for the major portion of the trajectories. The
sharp "swing-out'" of the control near the escape condition is due to the
tendency of the optimal trajectory to go to’radial thrust at escape. The
probable reason that the escape program is closer than the transfer program
to circumferential thrust is that the geometrical constraints on the transfer
are more rigid. That is, a greater number of geometrical constraints on the
problem usually implies a more complex optimal control law.

The maximum values of the range angle,‘ 0 , on the optimal traljectories
are shown in Figs. 12a and 12b. In each of these cases, the inequality 1 > ¢6
is satisfied. Since €8 approaches 1 on each ol these missions, a pood
approximation for the number of revolutions, n , that a multirevolution low-

thrust trajectory takes is
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n -~ 5 (7.5)

Figures 16 and 17 indicate the eccentricity values along typical
optimal trajectories since q = e cosw . On the optimal transfer, e < 0.1

for the entire trajectory; and on the optimal escape, e < 0.1 for approxi-

-

mately 80% of the trajectory.
The time rates of change of the {A, B} - set, developed in Sec. (4.2),
along optimal trajectories will now be discussed. First, consider Fig. Y4 which

exhibits a partial time history of A (the base Hamiltonian) for the five-

1

pound-thrust transfer. The character of A1 on the five-pound-thrust escape

is similar, and A, becomes unbounded at escape since it depends on Bi's

1

which are undefined at escape. The scale for A1 is ten times greater than

the scale for ay - Thus, for the first 400,000 seconds of the trajectory

A, deviates only slightly away from the base value (i.e., Al(to)). When

compared with a s both curves are oscillatory with similar periods of oscil-

lation. However, since the scale for A, is ten times greater than the scale

1

for o, , the mean-value of o

1 varies more rapidly than the mean-value of A

1 17

and the amplitude of oscillation of « is greater than the amplitude of os-

1
cillation of A1 . Near the end of the trajectory, the amplitude of A1 becomes
larger than the amplitude of oy
In Fig. 5 the total time histories of A_ for both the five-and ten-

5

pound cases are presented. These curves show that A5 is more slowly varying

than its comparable variable, a, Purthermore, for the transfer, A5 is

nearly constant. This fact may be of great use in future analytic investiga-
tions of optimal circular orbit transfers.

Since A_ =B8. , A, =8

5 3 oo these variables will not be
(v

and A4 = 0

discussed here. For a discussion of these variables, see the previous section.

Also, the Hamilton-Jacobi solution of Sec. (4.2) results in the equilibrium
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solution so that

loe
il
[a>]
!
O
[
§]
<D
!
D
HH
(@

gives a trivial relationship.

R

Each of the variables B2 . B3 s B4 , and B5 depends upon an

approximate evaluation of the indefinite integral

3s% |
J ( 56;‘) in s (7.8)

defined by Eq. (4.41). The evaluations represented in Figs. 6, 8, and 10

were determined by integrating Eq. (7.6) after expanding the integrand about
€6 = 0 . The Bi's were then evaluated (keeping up to second-order terms in
€ ). Thus, the degree of improvement of the Bi‘s over their counterparts in
the {a, B} - set depends upon how well Eq. (7.6) can be approximated. Since

the expansions for Figs. 6, 8, and 10 are about €6 @ 0 , the best comparison

chAnlA ha An tTha mnadaabhhAanhaAa~Ad ~AF + - N
P

First consider Fig. 6. The time history of B2 shows a large improve-

ment over Gy in the neighborhood of t = 0 . Note that the undesirable rapid

oscillation of oy is not present in 82 . The oscillation in B2 which be-

gins at approximately 75,000 seconds could probably be overcome by piecing to-

gether expansions about €6 =0, .1, .2 , etc. The behavior of B3 is

essentially the same as B2

In Fig. 10 the time history of B4 is presented. In a neighborhood of

t = 0 (approximately t e [0, 10°]) BH is essentially constant. Then as the

effects of the approximation of Eq. (7.6) begin to appear, the amplitude of os-
cillation of B4 increases. In Sec. (4.2) the relationship between bq (of
Sec. (4.1)) and BL+ was discussed. The time histories of bu are given in
Fig. 13. Note that b4 is a slower-varying, smoother function than B4 . This

is due to the fact that Bu depends upon an integral approximation whereas bLj
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is known in closed-form (recall the discussion at the end of Sec. (#.2)).

If Eq. (7.6) could be evaluated in closed-form, then Bu should be even more

slowly-varying than bu since Bq represents a greater portion of the total

Hamiltonian (i.e., compare the Hamiltonians of Eq. (4.5) and Eq. (4.26)).

Finally, consider Fig. 8, which contains a partial time history of BS'
In the neighborhood t € [0, 3.5 x 10*] of t =@ 0 , B5 is more slowly-vary-

5 Then, however, B5 develops a large oscillation. Inspection

of the last of Egs. (u4.44) shows that B

ing than B8
5 ig affected more than any of the

other Bi's by the €6 - expansion. This is the most probable reason for its

large, rapid oscillation.

7.3 The Non-Hamiltonian Approximate Solution

In Figs. 14 through 25 the complete time histories of the true optimal,

true circumferential, and circumferential approximation (of Chapter 5) for both

~- -

o ! . LI SRR 3R R, Tiamt  maaall Lamam
[P N A P (SRR - N . .

~
R e S - =

Chapter 5:

(a) h(8), and t(6) are asymptotic solutions with the single parameter

E]

§ = 59—, and they are taken to second-order in & ;

(b) q(8) Oand s(8) are taken to second-order in 6§ , alsoc; however,
their components are functions of €6 - expansions, and they are
taken to third-order in ¢ ;

(c) the Ai(e) are taken to first-order in ¢ , and their solution
requires the constant-mass assumption.

In Figs. 14 and 15 the time histories of h are shown. For both cases,
the true optimal and true circumferential values of h are nearly equal. The
circumferential approximation 1s exceptionally good for the transfer and for the
first two-thirds of the escape. These two cases demonstrate the dependence of

the approximation on the small-eccentricity assumption. That is, on the transfer
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the eccentricity is always small and the approximation is very good for the
entire trajectory; whereas, the circumferential approximation for the escape
begins to deteriorate as the escape condition is approached (i.e., as unit
eccentricity is approached). -

The time histories of q are shown in Figs. 16 and 17. The approxi-
mations to the true circumferential value are fairly good for the interval
t e [0, 3 x 10°] . After this interval, the amplitude of the oscillation
levels off, whereas the true circumferential amplitude continues to grow.

This is probably due to the fact that the g-approximation is dependent upon
an €8 = 0 expansion point. Thus, if expansions about other points are
pieced together, then an improvement in the approximation may result. Also
note that the g-value for the optimal escape is more nearly circumferential
than the optimal transfer. This concurs with the discussion of Fig. 4 at the
baminnine ~F Qan (7 93,

In Figs. 18 and 19 the time-range angle relations are given. All
three curves are nearly egual for each case. However, as Fig. 19 shows, the
escape case is not quite as good as the transfer. Thus, for the transfer,
the optimal histories for h(t) and t(8) are nearly circumferential, and
the circumferential approximations of Chapter 5 are very good.

The Lagrange multiplier histories for the circumferential cases were
evaluated by using the initial conditions of the true optimal trajectories.

In Figs. 20 and 21 the time histories of A1 are presented, and the true cir-
cumferential and true optimal cases give good agreement. They only begin to
differ in a small neighborhood of the terminal point. Considering the assump-
tions involved in forming the circumferential approximation, it is a relatively

good approximation, It possesses the functional form of the true solution, and
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by considering more than one expansion point for the (1 - e6)" expressions,
further gains in accuracy can be expected. Also, as shown in Chapter 5, the
higher order terms (in €) can be obtained in closed-form, but this introduces
quite a bookkeeping problem. -

In Figs. 22 and 23 the time histories of A2 are presented. The true
circumferential and true optimal solutions are not as close as the correspond-
ing A1 solutions. However, they have similar functional forms and it appears
that tbe true circumfrusrti+1 solution would only need a slight perturbing de-
crease in value to duplicate the true optimal solution. The circumferential
approximation is good for approximately tﬁe first 10° seconds, and then it
levels off. The solutions for A3 have the same character as the solutions
for A2

The total time histories of Aq are presented in Figs. 24 and 25.

The true nircumfexential solution closelv annroximates the true ontimal solu-
e K\ <e = PR
ko

tion féf‘approximatelyk%he %irst two-thirds of each trajectory. As with A2 .
even though the two solutions begin to diverge on the final portion of the tra-
jectory, they still have similar functional forms. Again the circumferential
approximation is good for approximately the first 10°% seconds, and then it
levels off to a near constant amplitude.

Certain characteristics are evident for all of the Ai solutions.
First, the periods of the oscillations for the three solutions (i.e., true
optimal, true circumferential, and approximate circumferential) are nearly the
same. For example, consider Fig. 22. Each of the three solutions have their
hills and valleys at approximately the same time. Thus, only the secular
klong—term) effects need to be better approximated in the circumferential

approximation. This suggests a future study of the problem which makes use

of the method of averaging.
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Probably a more important characteristic is the fact that the optimal
control is a parameter which does not greatly affect the functional form of
. the circumferential state or multiplier solutions of the giveﬁ differential
equations. Thus, one can be more confident that‘; perturbation analysis of
the circumferential solution will lead to good approximations of the true
optimal behavior.

The analysis of this section shows that the conjecture brought
forward in Chapter 4 (i.e., if the optimal state is near the circumferential
state, then the optimal multipliers are near the circumferential multipliers)
is a valid hypothesis. This result is clear for the major portion of the
escape mission since the circumferential state variables are close to the
optimal state variable. However, by Fig. 16, the optimal ¢q (and thus, s)
is not closely approximated by the circumferential gq for the circular
Orbii LPANSTEr  ANa VAT Thne TWO SeT8 NT LACTANCE mMIITINI1ers ATe 1eLHiLlve iy
close. This apparent discrepancy is resolved by the fact that q and s
are small for the entire trajectory and, thus, do not exert a great influ-
ence on the functional form of the multipliers. Hence, h and 6 (or t),

which are near-circumferential on the optimal transfer, essentially determine

the functional form of the Lagrange multiplier solutions.



CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

bl

8.1 Summary

In the previous chapters, the methods of classical Hamiltonian
mechanics are abplied to the optimal trajectory problem. The adaptation
and application of general canonical transformation theory to the optimal
trajectory problem is described. Furthermore, nonsingular Hamilton-Jacobi
solutions of the coast-arc and approximate circumferential thrust problems,
defined by generalized Hamiltonian functions, are obtained. These solutions
are represented by canonic constants so they define natural base solutions
for further canonic perturbation analyses. The time rates of change of these
canonic constants are evaluated alONg IEPrESEIILalive UpLinar sun ciswo s
escépe and circular orbit transfer trajectories. These evaluations indicate

qualitative characteristics of the motion of the optimal low-thrust frajec—

tories of interest.

8.2 Conclusions

1. The applicability of general canonical transformation theory in
optimal trajectory analysis has been demonstrated. Also, important appli-
cations of the subgroup of homogeneous canonical transformations were brought
forward in Chapter 2.

2. The Hamilton-Jacobi canonical transformation was applied to a
number of problems. In Sec. (3.2) & nonseparable H-J equation was solved by
sing a combination of the separation of variables method and the method of

characteristics. In Sec. (3.3) the solution of Sec. (3.2) was improved by

using a non-Hamilton-Jacobi transformation in conjunction with a new H-J

12
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trarnsformation. Both of these solutions determine sets of canonic constants
for the coast-arc problem. The solution of Sec. (3.3) represents a new,
nonsingular (at circular conditions) solution of the coast-arc. problem.

In Chapter 4 two H-J solutions of the cirgumferential thrust problem
were formed. These solutions are valid for low-thrust circular orbit trans-
fers and the major portion of low-thrust escape trajectories with circular
~initial conditions. These solutions represent a sound foundation for future
analytic investigations concerned with obtaining optimal feedback guidance
functions since the stopping points of these analyses are well-defined by
the Hamiltonians of Egs. (4.5) and (4.26).- Any perturbation of these solu-
tions which includes the B-term (defined by Eq. (3.54)) in the new Hamiltonian
should lead to a good approximate feedback guidance function.

3. Non-Hamiltonian solutions of the circumferential states and mul-
tipliers were formed in a straightforward manner in Chapter 5. The circum-

.Ferential approximation of the state is exceptionally good as long as the

w» srecentricity is relatively small, and the approximate multipliers are valid

in a relatively large neighborhood of their expansion point (i.e., 0 < €86
< .25). Furthermore, these solutions may be improved by either carrying
higher-order terms or piecing together expansions about different points
(e.g., €6 B0, .1, .2, ...).

Consideration of the circumferential solution indicated the follow-
ing characteristics of the optimal low-thrust trajectories under considera-
tion: (i) the circular orbit transfer has a small eccentricity value for
the entire trajectory, and the escape trajectory has a small eccentricity
value for approximately 80% of the trajectory; (ii) the control angle on
the first 80% of the escape lies in a smaller neighborhood of circumferential

control than the corresponding neighborhood for the total transfer; and (iii)
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the optimal control does not greatly affect the functional form of the
solution when it is considered as a parameter which perturbs the circum-
ferential solutions into the true optimal solutions.

4., The conjecture: "If the optimal stat® is approximately cir-
cumferential, then the optimal multipliers can be approximated by the
circumferential multipliers" was introduced, and validated numerically
for several cases in Chapter 7.

5. The following property was observed: if an optimal trajectory

problem is in the form

e
i

g+ ef
(e is small)

S
1

g-.'e + gf*%

then a transformation {xX(x, A), A(x, A)} which results in

A = eF*

1

does not necessarily imply that the Ai s vary more slowly than the Ai‘s.
However, the Xi‘s will usually be slower—varying than the xi's since
the right-hand sides of the ii - equations represent known accelerations.
6. If the Poincare variables (and their associated multipliers)
are used in a numerical study of the low-thrust problem, then a variable
time-step numerical integration scheme should be used for greatest effi-
ciency. That is, in Chapter 7 it was shown that the period of the oscil-

latory variables increases so the step size should be a function of the

instantaneous period.
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7. A simple method for approximating the neighborhood of the initial
Lagrange multipliers for the numerical iteration of low-thrust two-point
boundary value problems was presented in Chapter 6. Also, it was shown that
the secant method can be very useful in the numerical solution'of the two-
point boundary problem associated with the optiméi escape problem. It ap-
pears that other trajectory problems of similar character (i.e., nonrigid

terminal geometrical constraints) may be iterated most efficiently by the

secant method, also.

8.3 Recommendations

1. The remaining Hamiltonian of Eq. (4.26) should be attacked by
studying the time rates of change of the {A, B} - set in order to deter-
mine new simplifying assumptions. Also, the first-order eccentricity terms
should be studied, and the constant mass assumption should be relaxed. The
results of Chapter 5 can be used as a guide in obtaining the variable mass
solutions.

2. Similar solutions should be obtained for problems which do not
have small eccentricity values or small control angle values.

3. The problem should be reformulated in universal variables and
an attempt should be made to obtain a uniformly valid set of canonic con-
stants for the coast-arc problem.

4, Use should be made of the fact that the optimal multipliers
have the same functional form as the circumferential multipliers. This
fact may be useful in either numerical or analytical investigations of the
problem.

5. The approximate multiplier sclutions of Chapter 5 should be ex-
tended by considering variable mass, higher-order terms in € , and piecing

together the solutions cobtained by using more than one expansion point.
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FIGURE 1. Coordinate System and Control Angle Definition
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FIGURE 12a. Verification of The 1 > €6 Property
On Typical Optimal Circular Transfers
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FIGURE 12b. Verification of The 1 > €8 Property
On Typical Optimal Escape Trajectories
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APPENDIX A

In this appendix, both Theorem (2.1) and Property (2.1) of Chapter
2 will be proved. The proofs are expanded versions of the argumeﬁts given

by Wintner"” on pages 23-25 (for Theorem (2.1)) and ;Ege 29 (for Property

(2.1)).

Theorem 2.1: Let {x(q, p, t), A(q, p, t)} € Cc2 be a transformation which
satisfies the conditions of the implicit function theorem, and let M De
the Jacobian matrix of the transformation. Then, {x(q, p, t), Mg, p, t)}

is a canonical transformation if and only if M is a symplectic matrix.

Proof: (Sufficiency <) Consider the time derivatives of the set {x, A}

n axi Bxi axi
X, = 2 [ — 4. + = p.l + =
ag. 0 ot
i je1 %95 3 %y 73
(_§ - ’l_ _n\
. n 9As OA, oA
A, = | gq. + p.1l + .
1 . 9q. 0 ot
j=1 %95 3 %Py 7d

Let M be the Jacobian matrix of the transformation, i.e.,

X, : 9x%.
i A
9q. 3p.
q] ' Pj
Moz |[m——=t---—-
3 i A,
- ] ——
P t )
q] ' P]

Then, in matrix form
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xo
o)
I

= M + . (A.1)

>te

o
@l
>

Since the given transformation satisfies the implicit function theorem, the

inverse transformation exists, i.e., {q(x, A, t), p(x, A, t)} . Thus,
. 0
§ % 5t
= N + R (A.2)
. 3
b ) 3t

where N 1is the Jacobian matrix for the inverse transformation, i.e.,

[ —
g, | 3q;
3%, ; 3h.
J ! J
N = - _.%__._..._
op. | 9p,
¥ - - iy [}
X, L oA,
! ' j__
It will be shown now that N = M_i. Substitution of Equation (A.2) into
Equation (A.1) gives
. . 3q 9%
% % Bt 7t
= M + M +
op A
A A | 3¢ 7t

This equation must hold for all Hamiltonian functions, in particular those

which are identically zero. Thus, X = =0 so

9q 3X 3q | O

3t 3t ot 4 |t
M = - > = -M

op ax op ax

9t ot 9t at
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and, then

Since M_1 exists (M is symplectic) and since MN = I, it follows that

N = M_1 . By Property (5.1) of Chapter 2, N = wl- %—JMTJ . Hence,

Equation (A.2) can be expressed as

4 % 9q
1 T ot
= - gMJg +
u . 5p
P A Fr

Upon multiplication by J

21
—
1
K
S |

ey
] ¥ 4 P i i
J = - ;— U M J .
. . ap :
% A )
But, J | ., = and J = -I so
A -%
. ap ‘.1
P - 37 A
= %— MT
. aq .
-(q - = -%

Since {H, %, A} is a Hamiltonian system

. op oH

L T X
= - M . (A.3)

. 3q 3H

@] By

=
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In scalar form Equation (A.3) becomes

5 P 1 0% oy . X H ]
. ~ - - . - N Ta"_-_
1 ot i 5=1 aql ij q; BA]
(A.1)
T N T I L
i ot u =1 Bpl ij Bpi BA]

Define the function

i

K(q, p, t) %—H[x(q, p, t), Aq, p, t), t] + R(g, p, t), (A.5)

where %- and R are called the multiplier and the remainder function of the

canonical transformation, respectively. Then,

9% oA,

3K 1 2 _am % aH %%y 3R
3. - w Ll gt mL i ! Y ag
q; Y j=1 Xj q; 5 d; qs
(A.6)
~- . 1 ~~— oA, ey CAL. g,
T N -t N N7+ SV TP
apl u. =1 Bx] Bpi Bkj 3pl api
Substitution of Equations (A.6) into Equations (A.4) gives
PR S Y S )
1 at qu aqi
5 (A.7)
4. - i 2k 3R
i ot Bpi Bpi

In the definition of K , given by Equation (A.5), the term %—H is well-
defined, but R 1is not. Thus, for K to be a Hamiltonian function in the
{q, p}-space, it must be shown that there exists a function R(q, p, t)

which satisfies the equations
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- _._. = ._.._._ = -, (A,B)

For then Equations (A.7) become

PO
i qu
(i =1,...,n)
4 _ aK
. |0
i api

which is a Hamiltonian system in the {g, pl-space.
Thus, to complete the sufficiency proof, it must be shown that there
exists a solution R(g, p, t) to Equations (A.8) (note that the solution need

not be unique). In matrix form, Equations (A.8) can be written as

3R 99 3p
p ot at
= = J
R ap 3q
] Lais] H ] - a1 i ] ol 1
L | | . -3 | I ©ede
or
2R 2
ag 9t
- = J
R p
op at
s - . -t

Note that the left-hand side of this equation is a gradient. Thus, a solu-

tion of Equations (A.8) exists if the vector
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is a gradient. Since {x(q, p, t), A(q, p, t)} 1is assumed to be of class

3q daq ap op
2 . 1 T 1 n
C” , then the functions { T serer FE o0 FE o 0tc o EE"} are of class
1 . . . 3R 3R
C” . Thus, if there exists a function R(q, p, t), then { 55-,..., 5@%’
1
%g-,..., %%-} must be of class 01 and therefore.the following relations
1 n

will be true

52R _ 32R 32R _ 32R 52R _ 32R (A.9)
— 2 = . = . = . .
Sqiaqj 3qj3qi aquPj Spjaqi 3pi3pj Bpjapi
To ease the notation, let the two sets of variables be denoted by
{Xi""’XQn} = {xl,...,xn, Al,...,kn}
(A.10)
{Ql’.‘.’QQIl} = {q1:'~'sqns piﬁ"'bpn} H]
and let
X = ¢(Q, t)
Q = WX, t)

represent the given transformation and its inverse, respectively. Then, in

summary: if ] is a gradient of class ct , Equations (A.9) must be

3
[ 30
satisfied. Thus, there exists a solution R(Q) of Equations (A.8) only if
l
J[ %%—] is a gradient of class C1 , which implies that ga-{J[ %%-]} is
a symmetric matrix. It will be shown that this is indeed the case.

By expanding each side of the following equality it is readily de-

termined that

) oY _
56-{J{ 5?']} = J{= [ =1} (A.11)
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Another convenient representation is given by the following lemma.

Lemma 1: 3—-[ 3y—] - N—u1 , where N 1is the Jacobian of the inverse
—————e aQ ot ko _
transformation.

Proof: Consider the inverse transformation Q = YP(X, t) . Then,

oy _ oyl4e(Q, t), tl Ay _ ple(Q, t), tl
X Y and o = ot

i.e., after the differentiations are performed the relation X = ¢(Q, t) is
used to form a function of {Q, t} again. Since ¥(X, t) € C2 , it follows
by the chain rule that

3 3y 3 Y o2 Y 4 Y
3t lagd = swlsel = 39 lsc !5 (A.12)

since g%— is a function of {Q, t} . But, N = %%—, so upon substitution

in Equation (A.12), the following expression is obtained

N a2
3t~ 3Q [ 3¢ ]‘N ’
. -1 .
Then, since N exists,
3 o . oN -1
wlaw! = & (A.18)

The representations of Equation (A.11) and Lemma 1 then give

9 aN -1
P

3 I
56'{J[ 5%’]} = dJ

oN - . . .
Thus, the problem is now to show that J - %%-' N 1 is symmetric, il.e.,
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N | -1 _ o N
[ N" ] =4 N7 (A.14)
Since by hypothesis M is symplectic, it follows that N is
1

symplectic since N = M ~ and the symplectic matrices form a group. Thus,
NTJN = %-J . Since %—J is just a matrix of constants, it follows that
3 T ) 1 _
SE-[N JN] = T [ E—J 1 = o0
\
or,
N T TN _
(5 ) N + NJ= = 0.
. . . T
Since J 1s skew-symmetric, J = -J so
N T _T TN
—(‘-a?') JN’i‘NJ-éq:——-O.

Upon multiplication by N“1 first on the right and then (NT)—1 on—the

left leads to the following expression

-1, T ; N T T oN . -1
N (3p) & - I N = 0.
Therefore,
oN  -1.T _ oN -1
Nl = Jh .
. ‘ pe aN -1 .
which verifies the symmetry of J =— N , and thus, there exists a solu-

ot
tion R(q, p, t) of Equations (A.8).

(Necessity ») Since {x(q, p, t), A(q, p, t)} is assumed to be

3K . aK

it
i

=

t

canonical, there exists a K(q, p, t) such that {g

must be shown that M is symplectic (or, equivalently, that N 1is symplectic



since N = M

implies that M
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is symplectic if N is symplectic).

Making use of the notation introduced in Equations (A.10), Equations (A.2)

can be written as

where

But, {H, x, A} = {H, X}

Substitution in Equation (A.15) gives

(A.15)

is a Hamiltonian system so

oH
Aw

M

But, H(X, t) = H[X(Q, t), t]

rule) that

Substitution in Equation

wt J(MT)

Jl

which

[ 2T
oQ

.16) gives

]

oH

3Q

ol
9%

+

(A.18)



163
It is given that {K, g, p} = {K, Q} is a Hamiltonian system, so

.

0 =02 uhich implies

9Q
oK -1 7.7 3H 3Q
J '5-Q— M J(M ) 'g‘Q“ + -a?"w- (A.17)
Recalling that gt (Property C.3 of Chapter 2),
3K -1 .7t s 3Q
‘,()—6' = - JM J(M ) '8'6 - J -a—jt- N
or
9K _ TOH _ . 23Q
55— = JNJIN 39 J Tl
7,71 1,7
where use has been made of the matrix identity (M°) = (M ~) . Then,
K T oH 30
—a-Q— = - J[NJN ) + at] . (A.18)
1ne lelt-idid $ide Ol LQUdLLiOH \A. L0 15 d BLdUulenl, 1. WLiLL HUW D& SiUwl

that the‘right—hand side of Equation (A.18) is a gradient (for every
Hamiltonian H) only if N 1is a symplectic matrix.
Since Equation (A.18) must hold for every H-function, in particular

it must hold for H = 0 . Then,

L 52

3Q ot

. X . 2Q . . .
which implies that -J 7T is a gradient with respect to Q . It then fol-

T ( §§_) must be a gradient. On observing this fact, the

aQ

following Lemma can be stated.

lows that JNJN



Lemma 2: If JNJNT EE
=z 2Q
vl , where u =

Proof: Let A = JNJN

T

is a gradient for every choice of

constant (# 0)

Then A

o

3Q

is a gradient.

ish

T

, then JNJN = =

First, consider the

2n classes of Hamiltonian functions which are polynomials in only one Qi €

{Ql""’QQn} . Then, the following vectors are gradients:

1,1

4.1

.

a2n,1

where

and

gi(Qi)

gl(Ql)

gl(Ql)

a0 8(Q)
3,0 8(Q)
. Y
%n,2 g,(Qy)
4,1 21,2 - 84 ,2n
a2’1 (12,2 .o a2,21’1
%on,1 %nm,2 - %on,2n
3H(Oi)
g.(Q,) £ —g— -
171 BQi

e

a

a

(i

1.2n

2,2n

%on,2n

1,.

g2n(Q2n

an(QQD

.

80y

.,2n)

)

)

)

(A.19)

Since each of the vectors of Equations (A.19) is a gradient, there exist 2n

functions Bl(Q),...,B

2n

(Q)

such that:



165

aBi [~ =
'a'Z‘j"“ alal gi(Qi)
1
R = . . (i = 1,9..,211) (A.QO)
BBi -
— a, . g£.0Q.)
3Q2n 2n,1 1771
Given a particular i e {1,2,...,2n} , Equation (A.20) can be viewed as an

integrable system of first-order partial differential equations with depen-

dent variable Bi . Thus, the integrability conditions must be satisfied
2B, 92,
(i.e., = = —— =) . This is equivalent to the requirement that
9Q.9Q 3Q, 9Q,
ik k3
— -
3, & (Qy)
] ) A
'a—Q' . (1—1,...,21'1)
an g.(Q.)

i g N -~

be a symmetric matrix. Thus,
o(a; 1) ey ,g)

BQj BQi

for each 1, j, k = 1,2,...,2n . Consider the case i = k # j
9
aai,kg . . 8 aj,kg . 4 %2,
BQj k i,k BQj BQi k i,k BQi
But, g depends on only Qk and since 1 =%k , § # k
aakjk. aaj’k ng

(A.21)
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Suppose H(Qk) is a first-degree polynomial in Q. - Then,

g
- OH ko
g = 56% = constant - an = 0.

Since Equation (A.21) must hold for all choices of H , it follows that

Bak,k . _ aaj,k .
BQj k BQk k
or,
( 3ak,k i aaj’k ) g _
an an k

Since & # 0 in general, then

aak,k .Baj,k

an’ - an

Substitution of Equation (A.22) into Equation (A.21) then shows that

a. = 0 (5 # k) (A.23)

og
since —— # 0 , in general.
BQk

From Equation (A.23) it follows that A must be a diagonal matrix,

and then Equation (A.22) becomes

da
e = 0 (3 # X)
Q.
J
which implies either ak,k = ak,k(Qk) or ak,k = constant.

Finally, consider the class of Hamiltonian functions H = QiQi+1

(i = 1,...,2n-1). Then the following vectors are gradients:

(5 # k) (A.22)

-



ai,l(Ql)QQ 0

a2,2(Q2)Q1 s a2' ,Q(QQ)Q3

0 a3’3(Q3)Q2
0
0 0
L | L _

Samaze.

39n-1,2n-1n-1'%n

a2n,2n(Q2n)Q2n—1

167

(A.24)

Again Equations (A.21) must be satisfied, so operating on Equations (A.24)

a[ai,l(Qi)QQ] B[aQ,Q(Qz)Qll
3Q, 3Q,
B{aQ’Q(Qz)Qsl 3[a3,3(Q3)Q2]
3Q, 3Q,
8[aQn—l,Qn—l(QQn—l)QQn] a[aén,Qn(QQn)QQn—ll
Qo Qp-q
These conditions imply that
a; 1(Q) ay 5(Q))
2y 2(Q) az,3(Q3)
2on-1,2n-1Qn-1 355,20 Qn) -
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Thus, ai,i(Ql) = aQ’Q(QQ) CRE.— a2n,2n(Q2n) . But the set {Ql’ Qpsenes
an} is independent, so each of the diagonal elements must be the same non-

zero constant, i.e.,

-

ai,1 = ::12:’2 = .. = a2n,2n = u"* = constant .
Thus, from the above lemma
JNJNT = u*I
or
NONT = uRdTE = - sg = o

Therefore, N 1is symplectic and the theorem is proved.

Property 2.1: Let M =[% B] be a 2n x 2n matrix, where A, B, C,

CD

ANa 11 ArYe N X N SNDMATTICeS. JNell. M 15 d SVIIPDLECLLC Mallix Ll daud

only if ATC and BTD are symmetric and DTA - BTC = ul .

Proof: (=) To show that ATC and BTD are symmetric, it must be proved

T

that ATC = (ATC)T and B'D = (BTD)T . It is known that MTJM = uJ by

hypothesis, and it is easily verified that

Thus,
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or,

—CTA + ATC —CTB + ATD
Waw = (A.25)
-0 + BlC -D'B +.B'D
But, M is symplectic, so
-C'A + ATC = 0
—DTB + BTD =@ Q
pTA + BC = -uI

as desired.

(«) Conversely, let ATC = cla R 8D = DTB , and Dl - BTC = uI Dbe

given. From Equation (A.25)

MTJM =
—DTA + BTC —DTB + BTD
or,
0 —CTB + ATD
MTJM =] (A.28)
-ul 0
To show M 1is symplectic, then, it needs to be shown that —CTB + ATD = pl

Consider the transpose of the hypothesis DTA - BTC = ul

oA -8t = )’
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or,
ATD - CTB = ul

as desired, and Property (2.1) is verified.



APPENDIX B

In dealing with the base solutions of Chapters 3 and 4, the following

Taylor series expansions are useful for low-eccentricity missions.

tan‘l{[(l - g)tan 9_+ s] (1 - q2 - 82)—%

.1
2 A}~5[e

i

g sin 6 + s(cos 8 + 1) + %{qz - s2)sin 6 cos 6

gs sin?0 + (q3/3 - 3qs?/u)sin3s

-+

+ (s3/3 - g2%s) (cos & - 1)sin?e - %-q3 sin 6

- %(53 + q2s) (cos 6 - 1)2] + 0(q¥, s*) (B.1)
1 2 n
T C L EXEXT 4oLk x . (x e {q, s}) (B.2)
1 . n . n
7 1-(gcos 6 +ssinb) +~- ... + (-1) (qcos 6 + s sin 8) + ...
(B.3)
1 .
2 - 1 - 2(q cos 6 + s sin 8) + ~
n . n
+ (-1) (n+ 1) (g cos 6 + 8 sin 8) + ... , (B.4)
where Yy = 1+ q cos 6 + s sin © .
1 2 2 booob
T =57 1+ q° + s® + 0(g*, s*) (B.5)
1 1+ E{qz + s2) + 0(qg", s*) . (3.6)
(1 - qz - Sz>d/é 2 b
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APPENDIX C

The initial conditions, terminal conditions, and parameter values

used in the numerical studies of Chapter 7 are presented below.

~r

Escape Mission:

k = 3.9860640 x 101" metersd/seconds?
Isp = 5000 seconds
r, = 6.6781700 x 10° meters
0 = 0
o
T = 0
o
roéo = 7.7257984 x 10Y% meters/second
WO = 10,000 pounds

Circular Orbit Transfer:

k = 3,9860640 x 10*" meters’/seconds<
Isp = 5000 seconds

r = 6.7002574 x 10° meters

9 = 0

O
T = 0

(o]
roéo = 7.7130543 x 10" meters/second
WO = 10,000 pounds
rf' = 4.2266831 x 107 meters

rf = 0

rféf =  3.0709467 x 10% meters/second .
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